- Add comprehensive health check system with multiple endpoints - Add Prometheus metrics endpoint - Add production logging configurations (5 strategies) - Add complete deployment documentation suite: * QUICKSTART.md - 30-minute deployment guide * DEPLOYMENT_CHECKLIST.md - Printable verification checklist * DEPLOYMENT_WORKFLOW.md - Complete deployment lifecycle * PRODUCTION_DEPLOYMENT.md - Comprehensive technical reference * production-logging.md - Logging configuration guide * ANSIBLE_DEPLOYMENT.md - Infrastructure as Code automation * README.md - Navigation hub * DEPLOYMENT_SUMMARY.md - Executive summary - Add deployment scripts and automation - Add DEPLOYMENT_PLAN.md - Concrete plan for immediate deployment - Update README with production-ready features All production infrastructure is now complete and ready for deployment.
1155 lines
34 KiB
Markdown
1155 lines
34 KiB
Markdown
# N+1 Detection ML - Next Steps & TODOs
|
|
|
|
**Date**: 2025-10-22
|
|
**Status**: Integration Complete - Ready for Testing
|
|
**Phase**: Testing & Validation
|
|
|
|
## Overview
|
|
|
|
N+1 Detection ML implementation and integration is complete. This document outlines the next steps for testing, validation, and production deployment.
|
|
|
|
---
|
|
|
|
## Phase 1: Testing & Validation (Immediate Priority)
|
|
|
|
### 1.1 Test Execution on Stable PHP Environment
|
|
|
|
**Status**: ⏳ PENDING - Blocked by PHP 8.5 RC1 incompatibility
|
|
|
|
**Objective**: Execute all 51 N+1 Detection ML tests on stable PHP 8.4.x environment
|
|
|
|
**Steps**:
|
|
1. Set up PHP 8.4.x environment (stable release)
|
|
2. Install dependencies: `composer install`
|
|
3. Run all N+1 Detection ML tests:
|
|
```bash
|
|
./vendor/bin/pest tests/Framework/Database/NPlusOneDetection/
|
|
```
|
|
4. Verify all 51 tests pass:
|
|
- QueryFeatureExtractorTest (22 tests)
|
|
- NPlusOneDetectionEngineTest (14 tests)
|
|
- QueryExecutionContextTest (15 tests)
|
|
5. Address any test failures
|
|
6. Update test documentation with results
|
|
|
|
**Expected Outcome**: 51/51 tests passing ✅
|
|
|
|
**Blockers**: Currently blocked by PHP 8.5 RC1 + Pest/PHPUnit compatibility issue
|
|
|
|
**Priority**: HIGH
|
|
|
|
---
|
|
|
|
### 1.2 Integration Testing with Real Query Data
|
|
|
|
**Status**: ⏳ PENDING
|
|
|
|
**Objective**: Test N+1 Detection ML integration with real production-like query logs
|
|
|
|
**Steps**:
|
|
1. Run integration example:
|
|
```bash
|
|
php examples/nplusone-ml-integration-example.php
|
|
```
|
|
2. Verify output shows:
|
|
- Traditional pattern detection results
|
|
- ML analysis results (when enabled)
|
|
- Combined analysis with confidence scores
|
|
- No errors or exceptions
|
|
|
|
3. Test with real application code:
|
|
```php
|
|
$detectionService = $container->get(NPlusOneDetectionService::class);
|
|
|
|
$result = $detectionService->profile(function() {
|
|
// Real application code that may have N+1
|
|
$users = $userRepository->findAll();
|
|
foreach ($users as $user) {
|
|
$user->getPosts(); // Potential N+1
|
|
}
|
|
});
|
|
|
|
// Verify both traditional and ML analysis present
|
|
var_dump($result['detections']); // Traditional
|
|
var_dump($result['ml_analysis']); // ML-based
|
|
```
|
|
|
|
4. Compare traditional detection vs. ML detection:
|
|
- Identify cases where ML detected issues traditional detection missed
|
|
- Identify false positives from ML
|
|
- Adjust confidence threshold if needed
|
|
|
|
**Expected Outcome**:
|
|
- Integration works seamlessly
|
|
- ML provides additional insights beyond traditional detection
|
|
- Combined analysis more accurate than either method alone
|
|
|
|
**Priority**: HIGH
|
|
|
|
---
|
|
|
|
### 1.3 Performance Benchmarking
|
|
|
|
**Status**: ⏳ PENDING
|
|
|
|
**Objective**: Measure actual performance overhead of ML integration
|
|
|
|
**Steps**:
|
|
1. Create benchmark script:
|
|
```php
|
|
// Benchmark traditional detection only
|
|
$start = microtime(true);
|
|
for ($i = 0; $i < 1000; $i++) {
|
|
$result = $traditionalDetectionService->analyze();
|
|
}
|
|
$traditionalTime = microtime(true) - $start;
|
|
|
|
// Benchmark with ML enabled
|
|
$start = microtime(true);
|
|
for ($i = 0; $i < 1000; $i++) {
|
|
$result = $mlEnabledDetectionService->analyze();
|
|
}
|
|
$mlTime = microtime(true) - $start;
|
|
|
|
echo "Traditional: " . ($traditionalTime / 1000) . "ms per analysis\n";
|
|
echo "ML-enabled: " . ($mlTime / 1000) . "ms per analysis\n";
|
|
echo "Overhead: " . (($mlTime - $traditionalTime) / 1000) . "ms\n";
|
|
```
|
|
|
|
2. Measure memory usage:
|
|
- Traditional detection memory footprint
|
|
- ML-enabled detection memory footprint
|
|
- Memory overhead per analysis
|
|
|
|
3. Verify performance targets:
|
|
- Traditional detection: <10ms overhead ✅
|
|
- ML analysis: <15ms additional overhead ✅
|
|
- Total overhead: <25ms ✅
|
|
- Memory: <10MB per analysis ✅
|
|
|
|
**Expected Outcome**: Performance within acceptable limits (<25ms total overhead)
|
|
|
|
**Priority**: MEDIUM
|
|
|
|
---
|
|
|
|
## Phase 2: Production Preparation (Next Priority)
|
|
|
|
### 2.1 Configuration Tuning
|
|
|
|
**Status**: ⏳ PENDING
|
|
|
|
**Objective**: Optimize ML configuration based on test results
|
|
|
|
**Configuration Parameters to Tune**:
|
|
|
|
1. **Confidence Threshold** (`NPLUSONE_ML_CONFIDENCE_THRESHOLD`):
|
|
- Default: 60.0%
|
|
- Tune based on false positive rate
|
|
- Lower = more detections, higher false positives
|
|
- Higher = fewer detections, higher confidence
|
|
- Recommended range: 50-80%
|
|
|
|
2. **Analysis Timeout** (`NPLUSONE_ML_TIMEOUT_MS`):
|
|
- Default: 5000ms
|
|
- Tune based on query volume
|
|
- For high-traffic: reduce to 2000-3000ms
|
|
- For low-traffic: can increase to 10000ms
|
|
|
|
3. **Enabled State** (`NPLUSONE_ML_ENABLED`):
|
|
- Development: true (for testing)
|
|
- Staging: true (for validation)
|
|
- Production: true (after validation)
|
|
|
|
**Steps**:
|
|
1. Test different confidence thresholds (50%, 60%, 70%, 80%)
|
|
2. Measure false positive rate for each threshold
|
|
3. Select optimal threshold based on accuracy vs. noise trade-off
|
|
4. Document recommended configuration in deployment guide
|
|
|
|
**Expected Outcome**: Optimized configuration for production use
|
|
|
|
**Priority**: MEDIUM
|
|
|
|
---
|
|
|
|
### 2.2 Monitoring & Alerting Setup
|
|
|
|
**Status**: ⏳ PENDING
|
|
|
|
**Objective**: Set up monitoring for ML detection in production
|
|
|
|
**Monitoring Metrics**:
|
|
1. **ML Analysis Success Rate**:
|
|
```php
|
|
$successRate = (successful_analyses / total_analyses) * 100;
|
|
// Target: >99%
|
|
```
|
|
|
|
2. **Performance Metrics**:
|
|
- Average analysis time
|
|
- P50, P95, P99 latency
|
|
- Memory usage per analysis
|
|
|
|
3. **Detection Metrics**:
|
|
- Total anomalies detected
|
|
- High-confidence detections (>80%)
|
|
- Detection rate comparison (traditional vs. ML)
|
|
|
|
4. **Error Metrics**:
|
|
- ML engine failures
|
|
- Timeout occurrences
|
|
- Feature extraction errors
|
|
|
|
**Alerting Rules**:
|
|
- Alert if ML success rate <95%
|
|
- Alert if average analysis time >50ms
|
|
- Alert if critical N+1 patterns detected (confidence >90%)
|
|
|
|
**Implementation**:
|
|
```php
|
|
// Log metrics in analyze() method
|
|
$this->metrics->gauge('nplusone_ml.success_rate', $successRate);
|
|
$this->metrics->histogram('nplusone_ml.analysis_time_ms', $analysisTime);
|
|
$this->metrics->counter('nplusone_ml.anomalies_detected', $anomalyCount);
|
|
```
|
|
|
|
**Expected Outcome**: Comprehensive monitoring and alerting for ML system
|
|
|
|
**Priority**: MEDIUM
|
|
|
|
---
|
|
|
|
### 2.3 Documentation Updates
|
|
|
|
**Status**: ⏳ PENDING
|
|
|
|
**Objective**: Update framework documentation with ML integration
|
|
|
|
**Documentation to Create/Update**:
|
|
|
|
1. **User Guide**: How to use N+1 Detection with ML
|
|
2. **Configuration Guide**: Environment variables and tuning
|
|
3. **Troubleshooting Guide**: Common issues and solutions
|
|
4. **API Documentation**: NPlusOneDetectionService methods
|
|
5. **Performance Guide**: Expected overhead and optimization tips
|
|
|
|
**Locations**:
|
|
- `docs/database/nplusone-detection-ml.md`
|
|
- `docs/performance/query-optimization.md`
|
|
- `CLAUDE.md` (add ML integration reference)
|
|
|
|
**Priority**: LOW
|
|
|
|
---
|
|
|
|
## Phase 3: Advanced Features (Future Enhancements)
|
|
|
|
### 3.1 Persistent Learning System
|
|
|
|
**Status**: 📋 PLANNED
|
|
|
|
**Objective**: Enable ML engine to learn from historical query patterns
|
|
|
|
**Features**:
|
|
1. **Pattern Storage**:
|
|
- Store detected N+1 patterns in database
|
|
- Track pattern frequency and severity over time
|
|
- Build historical baseline for comparison
|
|
|
|
2. **Adaptive Thresholds**:
|
|
- Automatically adjust confidence thresholds based on accuracy
|
|
- Learn project-specific patterns
|
|
- Reduce false positives over time
|
|
|
|
3. **Pattern Recognition**:
|
|
- Identify recurring N+1 patterns
|
|
- Suggest permanent fixes (eager loading, caching)
|
|
- Track improvement after optimization
|
|
|
|
**Implementation Approach**:
|
|
```sql
|
|
CREATE TABLE nplusone_ml_patterns (
|
|
id SERIAL PRIMARY KEY,
|
|
pattern_hash VARCHAR(64) NOT NULL,
|
|
query_template TEXT NOT NULL,
|
|
detection_count INT DEFAULT 1,
|
|
first_detected TIMESTAMP NOT NULL,
|
|
last_detected TIMESTAMP NOT NULL,
|
|
confidence_score FLOAT NOT NULL,
|
|
severity VARCHAR(20) NOT NULL,
|
|
fixed BOOLEAN DEFAULT FALSE
|
|
);
|
|
```
|
|
|
|
**Estimated Effort**: 3-5 days
|
|
|
|
**Priority**: LOW
|
|
|
|
---
|
|
|
|
### 3.2 Real-time Alerting Integration
|
|
|
|
**Status**: 📋 PLANNED
|
|
|
|
**Objective**: Integrate with monitoring systems for real-time alerts
|
|
|
|
**Integrations**:
|
|
1. **Slack/Discord**:
|
|
- Send alerts when critical N+1 detected
|
|
- Include query details, confidence score, suggested fix
|
|
|
|
2. **Email Notifications**:
|
|
- Daily digest of N+1 patterns detected
|
|
- Weekly summary with trends
|
|
|
|
3. **Dashboard**:
|
|
- Real-time visualization of query performance
|
|
- Historical trends and patterns
|
|
- Optimization suggestions
|
|
|
|
**Implementation Approach**:
|
|
```php
|
|
if ($mlAnalysis['overall_confidence'] > 90.0 && $anomaly->severity === Severity::CRITICAL) {
|
|
$this->alertManager->sendCriticalAlert(
|
|
channel: 'slack',
|
|
message: "Critical N+1 pattern detected",
|
|
details: [
|
|
'confidence' => $mlAnalysis['overall_confidence'],
|
|
'query_count' => $context->queryCount,
|
|
'time_wasted' => $statistics['time_wasted_percentage']
|
|
]
|
|
);
|
|
}
|
|
```
|
|
|
|
**Estimated Effort**: 2-3 days
|
|
|
|
**Priority**: LOW
|
|
|
|
---
|
|
|
|
### 3.3 Automated Optimization Suggestions
|
|
|
|
**Status**: 📋 PLANNED
|
|
|
|
**Objective**: Generate specific code suggestions for fixing N+1 issues
|
|
|
|
**Features**:
|
|
1. **Eager Loading Suggestions**:
|
|
- Analyze detected patterns
|
|
- Identify exact relations to eager load
|
|
- Generate code snippets
|
|
|
|
2. **Caching Recommendations**:
|
|
- Identify queries suitable for caching
|
|
- Suggest cache keys and TTL
|
|
- Generate cache implementation code
|
|
|
|
3. **Repository Method Generation**:
|
|
- Create optimized repository methods
|
|
- Include eager loading by default
|
|
- Follow framework patterns
|
|
|
|
**Example Output**:
|
|
```php
|
|
// Detected N+1 in User->posts relationship
|
|
// Suggested fix:
|
|
|
|
// In UserRepository.php
|
|
public function findAllWithPosts(): array
|
|
{
|
|
return $this->entityManager
|
|
->createQueryBuilder()
|
|
->select('u', 'p')
|
|
->from(User::class, 'u')
|
|
->leftJoin('u.posts', 'p')
|
|
->getQuery()
|
|
->getResult();
|
|
}
|
|
|
|
// Usage:
|
|
$users = $userRepository->findAllWithPosts();
|
|
// No N+1 - posts are eager loaded
|
|
```
|
|
|
|
**Estimated Effort**: 5-7 days
|
|
|
|
**Priority**: LOW
|
|
|
|
---
|
|
|
|
### 3.4 Advanced ML Models
|
|
|
|
**Status**: 📋 PLANNED
|
|
|
|
**Objective**: Enhance detection accuracy with advanced ML techniques
|
|
|
|
**Potential Enhancements**:
|
|
1. **Neural Network-based Detection**:
|
|
- Train LSTM/GRU models on query sequences
|
|
- Detect complex temporal patterns
|
|
- Higher accuracy for subtle N+1 patterns
|
|
|
|
2. **Sequence Modeling**:
|
|
- Analyze query execution order
|
|
- Identify sequential dependencies
|
|
- Predict upcoming N+1 patterns
|
|
|
|
3. **Transfer Learning**:
|
|
- Train on multiple projects
|
|
- Share learned patterns across codebases
|
|
- Faster adaptation to new projects
|
|
|
|
**Estimated Effort**: 10-15 days (requires ML expertise)
|
|
|
|
**Priority**: VERY LOW
|
|
|
|
---
|
|
|
|
## Testing Checklist
|
|
|
|
### Pre-Deployment Checklist
|
|
|
|
- [ ] All 51 tests pass on stable PHP environment
|
|
- [ ] Integration example executes without errors
|
|
- [ ] Performance benchmarks meet targets (<25ms overhead)
|
|
- [ ] Configuration tuned for production
|
|
- [ ] Monitoring and alerting configured
|
|
- [ ] Documentation updated
|
|
- [ ] Staging environment testing complete
|
|
- [ ] Production deployment plan reviewed
|
|
|
|
### Production Deployment Steps
|
|
|
|
1. **Enable ML in Staging**:
|
|
```bash
|
|
# .env (staging)
|
|
NPLUSONE_ML_ENABLED=true
|
|
NPLUSONE_ML_TIMEOUT_MS=5000
|
|
NPLUSONE_ML_CONFIDENCE_THRESHOLD=60.0
|
|
```
|
|
|
|
2. **Monitor for 1 Week**:
|
|
- Verify no performance degradation
|
|
- Check ML success rate >99%
|
|
- Validate detection accuracy
|
|
|
|
3. **Enable in Production**:
|
|
- Same configuration as staging
|
|
- Enable gradually (feature flag)
|
|
- Monitor closely for 24-48 hours
|
|
|
|
4. **Iterate Based on Results**:
|
|
- Adjust confidence threshold if needed
|
|
- Fine-tune timeout based on traffic
|
|
- Document any issues and resolutions
|
|
|
|
---
|
|
|
|
## Known Issues & Limitations
|
|
|
|
### Current Known Issues
|
|
|
|
1. **PHP 8.5 RC1 Compatibility**:
|
|
- **Issue**: Cannot execute Pest tests due to PHP 8.5 RC1 + Pest/PHPUnit incompatibility
|
|
- **Impact**: Tests written but not executed
|
|
- **Solution**: Use stable PHP 8.4.x environment
|
|
- **Status**: Workaround available
|
|
|
|
### Current Limitations
|
|
|
|
1. **No Persistent Learning**:
|
|
- ML engine doesn't learn from past detections
|
|
- Each analysis is independent
|
|
- **Future Enhancement**: Persistent learning system (Phase 3.1)
|
|
|
|
2. **Limited Query Complexity Analysis**:
|
|
- Simple keyword-based complexity estimation
|
|
- Doesn't parse SQL AST
|
|
- **Future Enhancement**: Use SQL parser for accurate complexity
|
|
|
|
3. **Manual Configuration**:
|
|
- Confidence threshold must be manually tuned
|
|
- No automatic optimization
|
|
- **Future Enhancement**: Adaptive thresholds (Phase 3.1)
|
|
|
|
---
|
|
|
|
## Success Criteria
|
|
|
|
### Phase 1 Success Criteria (Testing)
|
|
- ✅ All 51 tests pass
|
|
- ✅ Integration example executes successfully
|
|
- ✅ Performance overhead <25ms
|
|
- ✅ No errors in production-like testing
|
|
|
|
### Phase 2 Success Criteria (Production)
|
|
- ✅ ML success rate >99%
|
|
- ✅ False positive rate <5%
|
|
- ✅ Detection improvement over traditional detection
|
|
- ✅ No performance degradation in production
|
|
|
|
### Phase 3 Success Criteria (Enhancements)
|
|
- ✅ Persistent learning reduces false positives by 20%
|
|
- ✅ Automated suggestions adopted by developers
|
|
- ✅ Real-time alerting prevents critical N+1 issues
|
|
|
|
---
|
|
|
|
## Contact & Support
|
|
|
|
**Implementation Lead**: Claude AI Assistant
|
|
**Documentation**: `/docs/planning/N+1-Detection-ML-*.md`
|
|
**Examples**: `/examples/nplusone-ml-*.php`
|
|
**Tests**: `/tests/Framework/Database/NPlusOneDetection/`
|
|
|
|
**For Issues**:
|
|
1. Check troubleshooting guide in integration summary
|
|
2. Review logs for ML engine errors
|
|
3. Verify configuration in `.env`
|
|
4. Consult example files for usage patterns
|
|
|
|
---
|
|
|
|
---
|
|
|
|
## Phase 4: Additional ML Implementations (Future Expansion)
|
|
|
|
### 4.1 Performance Anomaly Detection
|
|
|
|
**Status**: 📋 PLANNED
|
|
|
|
**Objective**: Use ML to detect performance anomalies across the entire application stack
|
|
|
|
**Implementation Details**:
|
|
|
|
1. **PerformanceFeatureExtractor**:
|
|
```php
|
|
final readonly class PerformanceFeatureExtractor implements FeatureExtractorInterface
|
|
{
|
|
public function extract(mixed $data): array
|
|
{
|
|
// $data = PerformanceMetrics object
|
|
return [
|
|
'response_time' => $data->responseTime->toMilliseconds(),
|
|
'memory_usage' => $data->memoryUsage->toMegabytes(),
|
|
'cpu_time' => $data->cpuTime->toMilliseconds(),
|
|
'db_query_count' => $data->databaseQueries->count(),
|
|
'cache_hit_rate' => $data->cacheMetrics->hitRate(),
|
|
'time_of_day' => $this->normalizeTimeOfDay($data->timestamp),
|
|
'day_of_week' => $this->normalizeDayOfWeek($data->timestamp),
|
|
'endpoint_hash' => $this->hashEndpoint($data->endpoint)
|
|
];
|
|
}
|
|
}
|
|
```
|
|
|
|
2. **Integration Points**:
|
|
- Hook into PerformanceCollector
|
|
- Monitor endpoint response times
|
|
- Track memory and CPU usage patterns
|
|
- Detect unusual resource consumption
|
|
|
|
3. **Anomaly Types**:
|
|
- Sudden latency spikes
|
|
- Memory leak patterns
|
|
- CPU usage anomalies
|
|
- Database connection saturation
|
|
|
|
4. **Action Items**:
|
|
- Alert operations team on critical anomalies
|
|
- Automatically scale resources if needed
|
|
- Generate performance reports
|
|
- Trigger circuit breakers for degraded services
|
|
|
|
**Estimated Effort**: 2-3 days
|
|
|
|
**Priority**: MEDIUM
|
|
|
|
**Expected Outcome**:
|
|
- Early detection of performance degradation
|
|
- Proactive resource scaling
|
|
- Reduced incident response time
|
|
- Historical performance baseline
|
|
|
|
---
|
|
|
|
### 4.2 Security Threat Intelligence - Advanced WAF
|
|
|
|
**Status**: 📋 PLANNED
|
|
|
|
**Objective**: Enhance WAF with ML-based behavior analysis for sophisticated attack detection
|
|
|
|
**Implementation Details**:
|
|
|
|
1. **BehaviorPatternExtractor**:
|
|
```php
|
|
final readonly class BehaviorPatternExtractor implements FeatureExtractorInterface
|
|
{
|
|
public function extract(mixed $data): array
|
|
{
|
|
// $data = RequestSequence (array of HttpRequest)
|
|
return [
|
|
'request_frequency' => $this->calculateFrequency($data),
|
|
'endpoint_diversity' => $this->calculateEndpointDiversity($data),
|
|
'parameter_entropy' => $this->calculateParameterEntropy($data),
|
|
'user_agent_consistency' => $this->checkUserAgentPatterns($data),
|
|
'geographic_anomaly' => $this->detectGeographicJumps($data),
|
|
'time_pattern_regularity' => $this->analyzeTimingPatterns($data),
|
|
'payload_similarity' => $this->calculatePayloadSimilarity($data),
|
|
'http_method_distribution' => $this->analyzeMethodDistribution($data)
|
|
];
|
|
}
|
|
}
|
|
```
|
|
|
|
2. **Advanced Threat Detection**:
|
|
- **Low-and-Slow Attacks**: Detect distributed attacks over extended periods
|
|
- **Polymorphic Payloads**: Identify attack patterns despite payload variations
|
|
- **Behavioral Anomalies**: Flag unusual request sequences
|
|
- **Bot Detection**: Distinguish sophisticated bots from legitimate users
|
|
- **Zero-Day Detection**: Identify novel attack patterns
|
|
|
|
3. **Integration with Existing WAF**:
|
|
```php
|
|
final readonly class MLEnhancedWafLayer implements SecurityLayer
|
|
{
|
|
public function analyze(HttpRequest $request): SecurityLayerResult
|
|
{
|
|
// Traditional pattern-based detection
|
|
$traditionalResult = $this->traditionalWaf->analyze($request);
|
|
|
|
// ML-based behavior analysis
|
|
$behaviorScore = $this->mlEngine->analyzeBehavior(
|
|
$this->requestHistory->getRecentRequests($request->getClientIp())
|
|
);
|
|
|
|
// Combined decision
|
|
$threatLevel = $this->combineThreatLevels(
|
|
$traditionalResult->threatLevel,
|
|
$behaviorScore
|
|
);
|
|
|
|
return new SecurityLayerResult(
|
|
passed: $threatLevel < ThreatLevel::HIGH,
|
|
threatLevel: $threatLevel,
|
|
detections: [...$traditionalResult->detections, ...$behaviorScore->anomalies]
|
|
);
|
|
}
|
|
}
|
|
```
|
|
|
|
4. **Real-time Adaptation**:
|
|
- Learn from attack patterns
|
|
- Automatically update detection rules
|
|
- Adaptive rate limiting based on behavior
|
|
- IP reputation scoring
|
|
|
|
**Estimated Effort**: 3-4 days
|
|
|
|
**Priority**: HIGH
|
|
|
|
**Expected Outcome**:
|
|
- Detection of sophisticated attacks
|
|
- Reduced false positives
|
|
- Adaptive security posture
|
|
- Better bot protection
|
|
|
|
---
|
|
|
|
### 4.3 Queue Job Anomaly Detection
|
|
|
|
**Status**: 📋 PLANNED
|
|
|
|
**Objective**: ML-based anomaly detection for queue job failures and performance issues
|
|
|
|
**Implementation Details**:
|
|
|
|
1. **QueueJobFeatureExtractor**:
|
|
```php
|
|
final readonly class QueueJobFeatureExtractor implements FeatureExtractorInterface
|
|
{
|
|
public function extract(mixed $data): array
|
|
{
|
|
// $data = JobExecutionMetrics
|
|
return [
|
|
'execution_time' => $data->executionTime->toMilliseconds(),
|
|
'memory_peak' => $data->memoryPeak->toMegabytes(),
|
|
'retry_count' => $data->retryCount,
|
|
'queue_wait_time' => $data->queueWaitTime->toMilliseconds(),
|
|
'job_type_hash' => $this->hashJobType($data->jobType),
|
|
'payload_size' => $data->payloadSize->toKilobytes(),
|
|
'time_of_day' => $this->normalizeTimeOfDay($data->timestamp),
|
|
'failure_rate' => $this->calculateRecentFailureRate($data->jobType)
|
|
];
|
|
}
|
|
}
|
|
```
|
|
|
|
2. **Anomaly Detection Scenarios**:
|
|
- Jobs taking unusually long to execute
|
|
- Unexpected memory usage patterns
|
|
- Increased retry rates
|
|
- Queue backlog buildup
|
|
- Job starvation (jobs never executed)
|
|
- Worker health degradation
|
|
|
|
3. **Integration with Queue System**:
|
|
```php
|
|
final readonly class MLEnhancedQueueMonitor
|
|
{
|
|
public function monitorJob(JobPayload $payload, JobResult $result): void
|
|
{
|
|
$metrics = $this->extractMetrics($payload, $result);
|
|
|
|
$anomalyResult = $this->mlEngine->analyze($metrics);
|
|
|
|
if ($anomalyResult->isAnomaly() && $anomalyResult->confidence > 0.8) {
|
|
// Take action based on anomaly type
|
|
match ($anomalyResult->anomalyType) {
|
|
'execution_time_spike' => $this->scaleWorkers(),
|
|
'memory_leak' => $this->restartWorker($result->workerId),
|
|
'high_failure_rate' => $this->pauseJobType($payload->jobType),
|
|
default => $this->alertOps($anomalyResult)
|
|
};
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
4. **Automated Responses**:
|
|
- Auto-scale workers on backlog detection
|
|
- Pause problematic job types
|
|
- Restart unhealthy workers
|
|
- Adjust job priorities dynamically
|
|
|
|
**Estimated Effort**: 2-3 days
|
|
|
|
**Priority**: MEDIUM
|
|
|
|
**Expected Outcome**:
|
|
- Proactive queue health management
|
|
- Reduced job failures
|
|
- Optimized worker allocation
|
|
- Early detection of systemic issues
|
|
|
|
---
|
|
|
|
### 4.4 Cache Efficiency Analysis
|
|
|
|
**Status**: 📋 PLANNED
|
|
|
|
**Objective**: ML-based cache performance optimization and efficiency analysis
|
|
|
|
**Implementation Details**:
|
|
|
|
1. **CacheEfficiencyExtractor**:
|
|
```php
|
|
final readonly class CacheEfficiencyExtractor implements FeatureExtractorInterface
|
|
{
|
|
public function extract(mixed $data): array
|
|
{
|
|
// $data = CacheOperationMetrics
|
|
return [
|
|
'hit_rate' => $data->hitRate(),
|
|
'miss_rate' => $data->missRate(),
|
|
'eviction_rate' => $data->evictionRate(),
|
|
'ttl_effectiveness' => $this->calculateTtlEffectiveness($data),
|
|
'key_access_pattern' => $this->analyzeAccessPattern($data->key),
|
|
'value_size' => $data->valueSize->toKilobytes(),
|
|
'time_since_last_access' => $data->timeSinceLastAccess->toMinutes(),
|
|
'access_frequency' => $data->accessCount / $data->lifetime->toHours()
|
|
];
|
|
}
|
|
}
|
|
```
|
|
|
|
2. **Optimization Opportunities**:
|
|
- **TTL Optimization**: Suggest optimal TTL based on access patterns
|
|
- **Cache Warming**: Identify keys that should be pre-cached
|
|
- **Eviction Strategy**: Recommend best eviction policy per cache
|
|
- **Cache Size**: Detect under/over-provisioned caches
|
|
- **Hot Key Detection**: Identify keys causing cache hotspots
|
|
|
|
3. **ML-Driven Recommendations**:
|
|
```php
|
|
final readonly class CacheOptimizationEngine
|
|
{
|
|
public function analyzeCache(string $cacheName): CacheOptimizationReport
|
|
{
|
|
$metrics = $this->gatherCacheMetrics($cacheName);
|
|
$analysis = $this->mlEngine->analyze($metrics);
|
|
|
|
return new CacheOptimizationReport(
|
|
currentEfficiency: $analysis->efficiency,
|
|
recommendations: [
|
|
'ttl_adjustments' => $this->suggestTtlChanges($analysis),
|
|
'size_optimization' => $this->suggestSizeChanges($analysis),
|
|
'warming_strategy' => $this->suggestWarmingStrategy($analysis),
|
|
'eviction_policy' => $this->suggestEvictionPolicy($analysis)
|
|
],
|
|
projectedImprovement: $analysis->projectedGain
|
|
);
|
|
}
|
|
}
|
|
```
|
|
|
|
4. **SmartCache Integration**:
|
|
- Integrate with existing SmartCache system
|
|
- Enhance HeatMapCacheStrategy with ML predictions
|
|
- Improve PredictiveCacheStrategy with better forecasting
|
|
- Adaptive TTL based on ML recommendations
|
|
|
|
**Estimated Effort**: 3-4 days
|
|
|
|
**Priority**: MEDIUM
|
|
|
|
**Expected Outcome**:
|
|
- Improved cache hit rates
|
|
- Reduced memory usage
|
|
- Optimized TTL values
|
|
- Better resource utilization
|
|
|
|
---
|
|
|
|
### 4.5 API Rate Limit Intelligence
|
|
|
|
**Status**: 📋 PLANNED
|
|
|
|
**Objective**: ML-based adaptive rate limiting with user behavior analysis
|
|
|
|
**Implementation Details**:
|
|
|
|
1. **RateLimitFeatureExtractor**:
|
|
```php
|
|
final readonly class RateLimitFeatureExtractor implements FeatureExtractorInterface
|
|
{
|
|
public function extract(mixed $data): array
|
|
{
|
|
// $data = UserApiActivity
|
|
return [
|
|
'request_frequency' => $data->requestsPerMinute(),
|
|
'burst_pattern' => $this->detectBurstPatterns($data),
|
|
'endpoint_diversity' => $this->calculateEndpointDiversity($data),
|
|
'time_pattern_regularity' => $this->analyzeTimingRegularity($data),
|
|
'error_rate' => $data->errorRate(),
|
|
'payload_size_variance' => $this->calculatePayloadVariance($data),
|
|
'geographic_consistency' => $this->checkGeographicPatterns($data),
|
|
'user_reputation_score' => $this->getUserReputation($data->userId)
|
|
];
|
|
}
|
|
}
|
|
```
|
|
|
|
2. **Intelligent Rate Limiting**:
|
|
- **User Classification**: Legitimate users vs. bots vs. abusers
|
|
- **Dynamic Limits**: Adjust limits based on behavior patterns
|
|
- **Predictive Throttling**: Anticipate abuse before it happens
|
|
- **Reputation-Based Limits**: Higher limits for trusted users
|
|
- **Adaptive Burst Allowances**: Allow legitimate bursts, block attacks
|
|
|
|
3. **Integration with Existing System**:
|
|
```php
|
|
final readonly class MLEnhancedRateLimiter implements RateLimiterInterface
|
|
{
|
|
public function allow(RateLimitKey $key, RateLimit $limit): bool
|
|
{
|
|
// Traditional token bucket
|
|
$tokenBucketResult = $this->tokenBucket->allow($key, $limit);
|
|
|
|
// ML-based behavior analysis
|
|
$behaviorAnalysis = $this->mlEngine->analyzeUserBehavior(
|
|
$this->activityHistory->getHistory($key)
|
|
);
|
|
|
|
// Adaptive decision
|
|
if ($behaviorAnalysis->isTrustedUser()) {
|
|
// Allow higher limits for trusted users
|
|
return $this->tokenBucket->allow($key, $limit->withMultiplier(2.0));
|
|
}
|
|
|
|
if ($behaviorAnalysis->isSuspicious()) {
|
|
// Stricter limits for suspicious behavior
|
|
return $this->tokenBucket->allow($key, $limit->withMultiplier(0.5));
|
|
}
|
|
|
|
return $tokenBucketResult;
|
|
}
|
|
}
|
|
```
|
|
|
|
4. **Real-time Adaptation**:
|
|
- Learn from attack patterns
|
|
- Automatic whitelist/blacklist updates
|
|
- Contextual rate limits per endpoint
|
|
- Fair usage enforcement
|
|
|
|
**Estimated Effort**: 3-5 days
|
|
|
|
**Priority**: MEDIUM
|
|
|
|
**Expected Outcome**:
|
|
- Better legitimate user experience
|
|
- Improved bot detection
|
|
- Reduced abuse without false positives
|
|
- Adaptive security posture
|
|
|
|
---
|
|
|
|
### 4.6 Database Query Optimizer
|
|
|
|
**Status**: 📋 PLANNED
|
|
|
|
**Objective**: ML-powered query optimization recommendations beyond N+1 detection
|
|
|
|
**Implementation Details**:
|
|
|
|
1. **QueryPerformanceExtractor**:
|
|
```php
|
|
final readonly class QueryPerformanceExtractor implements FeatureExtractorInterface
|
|
{
|
|
public function extract(mixed $data): array
|
|
{
|
|
// $data = QueryExecutionPlan
|
|
return [
|
|
'execution_time' => $data->executionTime->toMilliseconds(),
|
|
'rows_examined' => $data->rowsExamined,
|
|
'rows_returned' => $data->rowsReturned,
|
|
'index_usage' => $this->analyzeIndexUsage($data),
|
|
'join_complexity' => $this->calculateJoinComplexity($data),
|
|
'subquery_count' => $data->subqueryCount,
|
|
'full_table_scan' => $data->hasFullTableScan() ? 1.0 : 0.0,
|
|
'query_complexity_score' => $this->calculateComplexity($data)
|
|
];
|
|
}
|
|
}
|
|
```
|
|
|
|
2. **Optimization Recommendations**:
|
|
- **Index Suggestions**: Recommend missing indexes
|
|
- **Query Rewriting**: Suggest more efficient query structures
|
|
- **Partition Recommendations**: Identify tables needing partitioning
|
|
- **Denormalization Opportunities**: Suggest strategic denormalization
|
|
- **Caching Strategies**: Identify queries suitable for caching
|
|
|
|
3. **ML-Based Analysis**:
|
|
```php
|
|
final readonly class QueryOptimizationEngine
|
|
{
|
|
public function analyzeQuery(string $sql, QueryExecutionPlan $plan): QueryOptimizationReport
|
|
{
|
|
$features = $this->extractor->extract($plan);
|
|
$analysis = $this->mlEngine->analyze($features);
|
|
|
|
return new QueryOptimizationReport(
|
|
currentPerformance: $plan->executionTime,
|
|
bottlenecks: $analysis->identifiedBottlenecks,
|
|
recommendations: [
|
|
'indexes' => $this->suggestIndexes($sql, $analysis),
|
|
'rewrites' => $this->suggestRewrites($sql, $analysis),
|
|
'caching' => $this->suggestCaching($sql, $analysis),
|
|
'schema_changes' => $this->suggestSchemaChanges($analysis)
|
|
],
|
|
projectedImprovement: $analysis->projectedSpeedup
|
|
);
|
|
}
|
|
}
|
|
```
|
|
|
|
4. **Integration Points**:
|
|
- Hook into EntityManager query execution
|
|
- Analyze EXPLAIN plans automatically
|
|
- Track query performance over time
|
|
- Generate optimization reports
|
|
|
|
**Estimated Effort**: 4-5 days
|
|
|
|
**Priority**: LOW
|
|
|
|
**Expected Outcome**:
|
|
- Automated query optimization suggestions
|
|
- Proactive performance improvements
|
|
- Reduced manual query tuning effort
|
|
- Better database resource utilization
|
|
|
|
---
|
|
|
|
### 4.7 User Behavior Analytics for LiveComponents
|
|
|
|
**Status**: 📋 PLANNED
|
|
|
|
**Objective**: ML-based analysis of LiveComponent usage patterns for UX optimization
|
|
|
|
**Implementation Details**:
|
|
|
|
1. **LiveComponentUsageExtractor**:
|
|
```php
|
|
final readonly class LiveComponentUsageExtractor implements FeatureExtractorInterface
|
|
{
|
|
public function extract(mixed $data): array
|
|
{
|
|
// $data = ComponentInteractionLog
|
|
return [
|
|
'interaction_frequency' => $data->interactionsPerMinute(),
|
|
'component_lifetime' => $data->lifetime->toMinutes(),
|
|
'state_update_rate' => $data->stateUpdatesPerMinute(),
|
|
'error_rate' => $data->errorRate(),
|
|
'render_time' => $data->averageRenderTime->toMilliseconds(),
|
|
'payload_size' => $data->averagePayloadSize->toKilobytes(),
|
|
'user_engagement_score' => $this->calculateEngagement($data),
|
|
'abandonment_indicator' => $this->detectAbandonment($data)
|
|
];
|
|
}
|
|
}
|
|
```
|
|
|
|
2. **UX Insights**:
|
|
- **Engagement Patterns**: Identify highly-engaged vs. abandoned components
|
|
- **Performance Issues**: Detect slow components affecting UX
|
|
- **State Management**: Identify over-complex state management
|
|
- **User Frustration**: Detect error-prone components
|
|
- **Conversion Funnels**: Track user journeys through components
|
|
|
|
3. **ML-Driven UX Optimization**:
|
|
```php
|
|
final readonly class LiveComponentOptimizationEngine
|
|
{
|
|
public function analyzeComponent(string $componentName): ComponentOptimizationReport
|
|
{
|
|
$usage = $this->gatherUsageMetrics($componentName);
|
|
$analysis = $this->mlEngine->analyze($usage);
|
|
|
|
return new ComponentOptimizationReport(
|
|
engagement: $analysis->engagementScore,
|
|
issues: $analysis->identifiedIssues,
|
|
recommendations: [
|
|
'state_optimization' => $this->suggestStateOptimizations($analysis),
|
|
'interaction_improvements' => $this->suggestInteractionChanges($analysis),
|
|
'performance_tuning' => $this->suggestPerformanceImprovements($analysis),
|
|
'ux_enhancements' => $this->suggestUxEnhancements($analysis)
|
|
],
|
|
projectedEngagementIncrease: $analysis->projectedImprovement
|
|
);
|
|
}
|
|
}
|
|
```
|
|
|
|
4. **Automated A/B Testing**:
|
|
- Detect which component variants perform better
|
|
- Suggest winning variations
|
|
- Track conversion rates
|
|
- Identify UX friction points
|
|
|
|
**Estimated Effort**: 3-4 days
|
|
|
|
**Priority**: LOW
|
|
|
|
**Expected Outcome**:
|
|
- Improved user engagement
|
|
- Better UX through data-driven decisions
|
|
- Reduced component abandonment
|
|
- Higher conversion rates
|
|
|
|
---
|
|
|
|
### 4.8 Email/Notification Intelligence
|
|
|
|
**Status**: 📋 PLANNED
|
|
|
|
**Objective**: ML-based optimization of email delivery timing and content
|
|
|
|
**Implementation Details**:
|
|
|
|
1. **NotificationEngagementExtractor**:
|
|
```php
|
|
final readonly class NotificationEngagementExtractor implements FeatureExtractorInterface
|
|
{
|
|
public function extract(mixed $data): array
|
|
{
|
|
// $data = NotificationMetrics
|
|
return [
|
|
'open_rate' => $data->openRate(),
|
|
'click_through_rate' => $data->clickThroughRate(),
|
|
'time_to_open' => $data->averageTimeToOpen->toHours(),
|
|
'delivery_time_of_day' => $this->normalizeTimeOfDay($data->sentAt),
|
|
'day_of_week' => $this->normalizeDayOfWeek($data->sentAt),
|
|
'subject_length' => $this->normalizeLength($data->subject),
|
|
'content_length' => $this->normalizeLength($data->body),
|
|
'user_engagement_history' => $this->getUserEngagementScore($data->userId)
|
|
];
|
|
}
|
|
}
|
|
```
|
|
|
|
2. **Optimization Strategies**:
|
|
- **Send Time Optimization**: Predict best time to send per user
|
|
- **Subject Line Optimization**: Suggest high-performing subject lines
|
|
- **Content Personalization**: Recommend personalized content
|
|
- **Frequency Optimization**: Prevent notification fatigue
|
|
- **Channel Selection**: Choose best channel (email vs. push vs. SMS)
|
|
|
|
3. **ML-Powered Delivery**:
|
|
```php
|
|
final readonly class IntelligentNotificationDispatcher
|
|
{
|
|
public function schedule(Notification $notification, UserId $userId): ScheduledNotification
|
|
{
|
|
$userProfile = $this->getUserEngagementProfile($userId);
|
|
$prediction = $this->mlEngine->predictOptimalDelivery($notification, $userProfile);
|
|
|
|
return new ScheduledNotification(
|
|
notification: $notification,
|
|
scheduledAt: $prediction->optimalSendTime,
|
|
channel: $prediction->preferredChannel,
|
|
personalization: $prediction->contentOptimizations
|
|
);
|
|
}
|
|
}
|
|
```
|
|
|
|
4. **Continuous Learning**:
|
|
- Track engagement metrics
|
|
- Learn user preferences
|
|
- Adapt to behavior changes
|
|
- A/B test strategies
|
|
|
|
**Estimated Effort**: 3-4 days
|
|
|
|
**Priority**: LOW
|
|
|
|
**Expected Outcome**:
|
|
- Higher email open rates
|
|
- Better click-through rates
|
|
- Reduced unsubscribes
|
|
- Improved user satisfaction
|
|
|
|
---
|
|
|
|
## Phase 4 Summary
|
|
|
|
**Total Additional ML Implementations**: 8
|
|
**Total Estimated Effort**: 23-32 days
|
|
**Priority Distribution**:
|
|
- HIGH: 1 (Security Threat Intelligence)
|
|
- MEDIUM: 4 (Performance, Queue, Cache, Rate Limiting)
|
|
- LOW: 3 (Query Optimizer, LiveComponents, Notifications)
|
|
|
|
**Implementation Strategy**:
|
|
1. Start with Phase 1-3 (N+1 Detection ML testing and validation)
|
|
2. Implement Phase 4 projects based on priority and business needs
|
|
3. Each Phase 4 project can be implemented independently
|
|
4. Leverage existing ML framework for faster development
|
|
5. Focus on high-value, medium-effort projects first
|
|
|
|
**Framework Benefits**:
|
|
- Reuse ML infrastructure (FeatureExtractorInterface, AnomalyDetectorInterface)
|
|
- Consistent patterns across all implementations
|
|
- Shared testing and validation strategies
|
|
- Common monitoring and alerting
|
|
|
|
---
|
|
|
|
**Last Updated**: 2025-10-22
|
|
**Next Review**: After Phase 1 testing complete
|