Files
michaelschiemer/scripts/seed-ml-models.php
Michael Schiemer c8b47e647d feat(Docker): Upgrade to PHP 8.5.0RC3 with native ext-uri support
BREAKING CHANGE: Requires PHP 8.5.0RC3

Changes:
- Update Docker base image from php:8.4-fpm to php:8.5.0RC3-fpm
- Enable ext-uri for native WHATWG URL parsing support
- Update composer.json PHP requirement from ^8.4 to ^8.5
- Add ext-uri as required extension in composer.json
- Move URL classes from Url.php85/ to Url/ directory (now compatible)
- Remove temporary PHP 8.4 compatibility workarounds

Benefits:
- Native URL parsing with Uri\WhatWg\Url class
- Better performance for URL operations
- Future-proof with latest PHP features
- Eliminates PHP version compatibility issues
2025-10-27 09:31:28 +01:00

249 lines
8.3 KiB
PHP

<?php
declare(strict_types=1);
require_once __DIR__ . '/../vendor/autoload.php';
use App\Framework\MachineLearning\ModelManagement\ModelRegistry;
use App\Framework\MachineLearning\ModelManagement\ValueObjects\ModelMetadata;
use App\Framework\MachineLearning\ModelManagement\ValueObjects\ModelType;
use App\Framework\MachineLearning\ModelManagement\ModelPerformanceMonitor;
use App\Framework\Core\ValueObjects\Version;
use App\Framework\Core\ValueObjects\Timestamp;
use App\Framework\Core\ValueObjects\Duration;
use App\Framework\Core\AppBootstrapper;
use App\Framework\Performance\EnhancedPerformanceCollector;
use App\Framework\DateTime\SystemClock;
use App\Framework\DateTime\SystemHighResolutionClock;
use App\Framework\Performance\MemoryMonitor;
echo "🌱 ML Models Seeder\n";
echo "==================\n\n";
// Bootstrap application
$basePath = dirname(__DIR__);
$clock = new SystemClock();
$highResClock = new SystemHighResolutionClock();
$memoryMonitor = new MemoryMonitor();
$collector = new EnhancedPerformanceCollector($clock, $highResClock, $memoryMonitor, enabled: true);
$bootstrapper = new AppBootstrapper($basePath, $collector, $memoryMonitor);
$container = $bootstrapper->bootstrapWorker();
/** @var ModelRegistry $registry */
$registry = $container->get(ModelRegistry::class);
/** @var ModelPerformanceMonitor $performanceMonitor */
$performanceMonitor = $container->get(ModelPerformanceMonitor::class);
// Sample Models to Seed
$models = [
// 1. Fraud Detection Model (Supervised, Production)
[
'name' => 'fraud-detector',
'type' => ModelType::SUPERVISED,
'version' => '1.0.0',
'environment' => 'production',
'configuration' => [
'threshold' => 0.75,
'min_confidence' => 0.6,
'feature_count' => 15,
'algorithm' => 'random_forest',
],
'metrics' => [
'accuracy' => 0.94,
'precision' => 0.91,
'recall' => 0.89,
'f1_score' => 0.90,
'total_predictions' => 15234,
'average_confidence' => 0.87,
'confusion_matrix' => [
'true_positive' => 1345,
'true_negative' => 12789,
'false_positive' => 567,
'false_negative' => 533,
],
],
],
// 2. Spam Classifier (Supervised, Production - Degraded)
[
'name' => 'spam-classifier',
'type' => ModelType::SUPERVISED,
'version' => '2.0.0',
'environment' => 'production',
'configuration' => [
'threshold' => 0.80,
'min_confidence' => 0.7,
'feature_count' => 20,
'algorithm' => 'gradient_boosting',
],
'metrics' => [
'accuracy' => 0.78, // Degraded performance
'precision' => 0.82,
'recall' => 0.71,
'f1_score' => 0.76,
'total_predictions' => 8923,
'average_confidence' => 0.75,
'confusion_matrix' => [
'true_positive' => 892,
'true_negative' => 6051,
'false_positive' => 1234,
'false_negative' => 746,
],
],
],
// 3. User Segmentation (Unsupervised, Production)
[
'name' => 'user-segmentation',
'type' => ModelType::UNSUPERVISED,
'version' => '1.2.0',
'environment' => 'production',
'configuration' => [
'n_clusters' => 5,
'algorithm' => 'k_means',
'feature_count' => 12,
],
'metrics' => [
'accuracy' => 0.88,
'total_predictions' => 5678,
'average_confidence' => 0.83,
'silhouette_score' => 0.72,
],
],
// 4. Anomaly Detection (Unsupervised, Production)
[
'name' => 'anomaly-detector',
'type' => ModelType::UNSUPERVISED,
'version' => '1.5.0',
'environment' => 'production',
'configuration' => [
'contamination' => 0.1,
'algorithm' => 'isolation_forest',
'feature_count' => 10,
],
'metrics' => [
'accuracy' => 0.92,
'total_predictions' => 12456,
'average_confidence' => 0.85,
'anomaly_rate' => 0.08,
],
],
// 5. Recommendation Engine (Reinforcement, Development)
[
'name' => 'recommendation-engine',
'type' => ModelType::REINFORCEMENT,
'version' => '0.5.0',
'environment' => 'development',
'configuration' => [
'learning_rate' => 0.001,
'discount_factor' => 0.95,
'exploration_rate' => 0.1,
'algorithm' => 'q_learning',
],
'metrics' => [
'accuracy' => 0.67, // Still in development
'total_predictions' => 2345,
'average_confidence' => 0.62,
'average_reward' => 3.42,
],
],
// 6. Sentiment Analysis (Supervised, Staging)
[
'name' => 'sentiment-analyzer',
'type' => ModelType::SUPERVISED,
'version' => '2.1.0',
'environment' => 'staging',
'configuration' => [
'threshold' => 0.65,
'algorithm' => 'lstm',
'feature_count' => 50,
'max_sequence_length' => 100,
],
'metrics' => [
'accuracy' => 0.91,
'precision' => 0.89,
'recall' => 0.92,
'f1_score' => 0.90,
'total_predictions' => 7890,
'average_confidence' => 0.86,
],
],
];
echo "Registering " . count($models) . " ML models...\n\n";
foreach ($models as $index => $modelData) {
$modelNum = $index + 1;
echo "[$modelNum/" . count($models) . "] Registering {$modelData['name']} v{$modelData['version']}...\n";
try {
// Create ModelMetadata
$metadata = new ModelMetadata(
modelName: $modelData['name'],
modelType: $modelData['type'],
version: Version::fromString($modelData['version']),
configuration: $modelData['configuration'],
performanceMetrics: [],
createdAt: Timestamp::now(),
deployedAt: $modelData['environment'] === 'production' ? Timestamp::now() : null,
environment: $modelData['environment'],
metadata: [
'seeded_at' => date('Y-m-d H:i:s'),
'description' => "Sample {$modelData['type']->value} model for testing",
]
);
// Register model
$registry->register($metadata);
// Track performance metrics using trackPrediction
$performanceMonitor->trackPrediction(
modelName: $modelData['name'],
version: Version::fromString($modelData['version']),
prediction: 1, // Dummy prediction
actual: 1, // Dummy actual
confidence: $modelData['metrics']['average_confidence']
);
// Update metrics manually to match our sample data
if (isset($modelData['metrics']['confusion_matrix'])) {
$cm = $modelData['metrics']['confusion_matrix'];
// Track individual predictions to build up confusion matrix
for ($i = 0; $i < $cm['true_positive']; $i++) {
$performanceMonitor->trackPrediction(
modelName: $modelData['name'],
version: Version::fromString($modelData['version']),
prediction: 1,
actual: 1,
confidence: $modelData['metrics']['average_confidence']
);
}
}
echo " ✅ Successfully registered {$modelData['name']}\n";
echo " - Type: {$modelData['type']->value}\n";
echo " - Environment: {$modelData['environment']}\n";
echo " - Accuracy: " . round($modelData['metrics']['accuracy'] * 100, 2) . "%\n";
if ($modelData['metrics']['accuracy'] < 0.85) {
echo " ⚠️ Warning: Degraded performance\n";
}
echo "\n";
} catch (\Exception $e) {
echo " ❌ Error: {$e->getMessage()}\n\n";
}
}
echo "==================\n";
echo "✅ Seeding complete!\n\n";
echo "Next steps:\n";
echo "1. Visit https://localhost/admin/ml/dashboard to see the models\n";
echo "2. Check API endpoint: https://localhost/api/ml/dashboard\n";
echo "3. Verify foreach attribute rendering in Models Overview table\n";