Files
michaelschiemer/tests/Framework/Waf/MachineLearning/MachineLearningEngineTest.php
Michael Schiemer fc3d7e6357 feat(Production): Complete production deployment infrastructure
- Add comprehensive health check system with multiple endpoints
- Add Prometheus metrics endpoint
- Add production logging configurations (5 strategies)
- Add complete deployment documentation suite:
  * QUICKSTART.md - 30-minute deployment guide
  * DEPLOYMENT_CHECKLIST.md - Printable verification checklist
  * DEPLOYMENT_WORKFLOW.md - Complete deployment lifecycle
  * PRODUCTION_DEPLOYMENT.md - Comprehensive technical reference
  * production-logging.md - Logging configuration guide
  * ANSIBLE_DEPLOYMENT.md - Infrastructure as Code automation
  * README.md - Navigation hub
  * DEPLOYMENT_SUMMARY.md - Executive summary
- Add deployment scripts and automation
- Add DEPLOYMENT_PLAN.md - Concrete plan for immediate deployment
- Update README with production-ready features

All production infrastructure is now complete and ready for deployment.
2025-10-25 19:18:37 +02:00

419 lines
15 KiB
PHP

<?php
declare(strict_types=1);
namespace Tests\Framework\Waf\MachineLearning;
use App\Framework\Core\ValueObjects\Duration;
use App\Framework\Core\ValueObjects\Percentage;
use App\Framework\Core\ValueObjects\Timestamp;
use App\Framework\DateTime\Clock;
use App\Framework\DateTime\DateTime;
use App\Framework\Http\IpAddress;
use App\Framework\MachineLearning\Core\AnomalyDetectorInterface;
use App\Framework\MachineLearning\Core\FeatureExtractorMetadata;
use App\Framework\MachineLearning\ValueObjects\AnomalyDetection;
use App\Framework\MachineLearning\ValueObjects\AnomalyType;
use App\Framework\MachineLearning\ValueObjects\Feature;
use App\Framework\MachineLearning\ValueObjects\FeatureType;
use App\Framework\Waf\Analysis\ValueObjects\RequestAnalysisData;
use App\Framework\Waf\MachineLearning\MachineLearningEngine;
use App\Framework\Waf\MachineLearning\MachineLearningResult;
use App\Framework\Waf\MachineLearning\WafFeatureExtractor;
use Mockery;
use Mockery\MockInterface;
// Hilfsfunktion zum Erstellen eines Mock-Extraktors
function createMockExtractorMLE(bool $enabled = true, ?FeatureType $featureType = null, array $features = []): MockInterface
{
$featureType = $featureType ?? FeatureType::STRUCTURAL_PATTERN;
$extractor = Mockery::mock(WafFeatureExtractor::class, FeatureExtractorMetadata::class);
$extractor->shouldReceive('isEnabled')->andReturn($enabled);
$extractor->shouldReceive('getFeatureType')->andReturn($featureType);
$extractor->shouldReceive('getPriority')->andReturn(10);
$extractor->shouldReceive('canExtract')->with(Mockery::type(RequestAnalysisData::class))->andReturn(true);
$extractor->shouldReceive('extractFeatures')->with(Mockery::type(RequestAnalysisData::class), Mockery::type('array'))->andReturn($features);
$extractor->shouldReceive('getExpectedProcessingTime')->andReturn(10);
$extractor->shouldReceive('supportsParallelExecution')->andReturn(true);
$extractor->shouldReceive('getDependencies')->andReturn([]);
return $extractor;
}
// Hilfsfunktion zum Erstellen eines Mock-Detektors
function createMockDetectorMLE(bool $enabled = true, array $supportedTypes = [], array $anomalies = []): MockInterface
{
$supportedTypes = $supportedTypes ?: [FeatureType::STRUCTURAL_PATTERN];
$detector = Mockery::mock(AnomalyDetectorInterface::class);
$detector->shouldReceive('isEnabled')->andReturn($enabled);
$detector->shouldReceive('getName')->andReturn('MockDetector');
$detector->shouldReceive('getSupportedFeatureTypes')->andReturn($supportedTypes);
$detector->shouldReceive('canAnalyze')->andReturn(true);
$detector->shouldReceive('detectAnomalies')->andReturn($anomalies);
$detector->shouldReceive('updateModel')->andReturn(null);
return $detector;
}
// Hilfsfunktion zum Erstellen einer Beispiel-RequestAnalysisData
function createSampleRequestData(): RequestAnalysisData
{
return new RequestAnalysisData(
method: 'GET',
url: '/test',
path: '/test',
queryString: '',
headers: ['User-Agent' => 'TestAgent'],
queryParameters: [],
postParameters: [],
cookies: [],
body: '',
files: [],
clientIp: IpAddress::localhost(),
timestamp: Timestamp::now()
);
}
// Hilfsfunktion zum Erstellen einer Beispiel-Clock
function createMockClockMLE(): MockInterface
{
$clock = Mockery::mock(Clock::class);
$dateTime = DateTime::fromString('2025-07-31 13:42:00');
$timestamp = Timestamp::fromDateTime($dateTime);
$clock->shouldReceive('time')->andReturn($timestamp);
return $clock;
}
test('gibt leeres Ergebnis zurück wenn deaktiviert', function () {
// Arrange
$engine = new MachineLearningEngine(
enabled: false,
extractors: [],
detectors: [],
clock: createMockClockMLE(),
analysisTimeout: Duration::fromSeconds(10),
confidenceThreshold: Percentage::from(50.0)
);
// Act
$result = $engine->analyzeRequest(createSampleRequestData());
// Assert
expect($result)->toBeInstanceOf(MachineLearningResult::class);
expect($result->enabled)->toBeFalse();
expect($result->features)->toBeEmpty();
expect($result->anomalies)->toBeEmpty();
expect($result->confidence->getValue())->toBe(0.0);
});
test('extrahiert Features aus Request-Daten', function () {
// Arrange
$feature = new Feature(
type: FeatureType::STRUCTURAL_PATTERN,
name: 'test_feature',
value: 42.0,
unit: 'count'
);
$extractor = createMockExtractorMLE(true, FeatureType::STRUCTURAL_PATTERN, [$feature]);
$engine = new MachineLearningEngine(
enabled: true,
extractors: [$extractor],
detectors: [],
clock: createMockClockMLE(),
analysisTimeout: Duration::fromSeconds(10),
confidenceThreshold: Percentage::from(50.0)
);
// Act
$result = $engine->analyzeRequest(createSampleRequestData());
// Assert
expect($result->error)->toBeNull();
expect($result->features)->toHaveCount(1);
expect($result->features[0])->toBeInstanceOf(Feature::class);
expect($result->features[0]->name)->toBe('test_feature');
expect($result->features[0]->value)->toBe(42.0);
});
test('erkennt Anomalien in Features', function () {
// Arrange
$feature = new Feature(
type: FeatureType::STRUCTURAL_PATTERN,
name: 'test_feature',
value: 42.0,
unit: 'count'
);
$anomaly = new AnomalyDetection(
type: AnomalyType::STATISTICAL_ANOMALY,
featureType: FeatureType::STRUCTURAL_PATTERN,
confidence: Percentage::from(75.0),
anomalyScore: 0.8,
description: 'Test anomaly',
features: [$feature],
evidence: [
'metric' => 'test_feature',
'value' => 42.0,
'expected_value' => 10.0,
'z_score' => 2.5,
]
);
$extractor = createMockExtractorMLE(true, FeatureType::STRUCTURAL_PATTERN, [$feature]);
$detector = createMockDetectorMLE(true, [FeatureType::STRUCTURAL_PATTERN], [$anomaly]);
$engine = new MachineLearningEngine(
enabled: true,
extractors: [$extractor],
detectors: [$detector],
clock: createMockClockMLE(),
analysisTimeout: Duration::fromSeconds(10),
confidenceThreshold: Percentage::from(50.0)
);
// Act
$result = $engine->analyzeRequest(createSampleRequestData());
// Assert
expect($result->anomalies)->toHaveCount(1);
expect($result->anomalies[0])->toBeInstanceOf(AnomalyDetection::class);
expect($result->anomalies[0]->type)->toBe(AnomalyType::STATISTICAL_ANOMALY);
expect($result->anomalies[0]->confidence->getValue())->toBe(75.0);
});
test('filtert Anomalien basierend auf Konfidenz-Schwellenwert', function () {
// Arrange
$feature = new Feature(
type: FeatureType::STRUCTURAL_PATTERN,
name: 'test_feature',
value: 42.0,
unit: 'count'
);
$highConfidenceAnomaly = new AnomalyDetection(
type: AnomalyType::STATISTICAL_ANOMALY,
featureType: FeatureType::STRUCTURAL_PATTERN,
confidence: Percentage::from(80.0),
anomalyScore: 0.8,
description: 'High confidence anomaly',
features: [$feature],
evidence: ['value' => 42.0, 'expected_value' => 10.0]
);
$lowConfidenceAnomaly = new AnomalyDetection(
type: AnomalyType::STATISTICAL_ANOMALY,
featureType: FeatureType::STRUCTURAL_PATTERN,
confidence: Percentage::from(40.0),
anomalyScore: 0.3,
description: 'Low confidence anomaly',
features: [$feature],
evidence: ['value' => 42.0, 'expected_value' => 30.0]
);
$extractor = createMockExtractorMLE(true, FeatureType::STRUCTURAL_PATTERN, [$feature]);
$detector = createMockDetectorMLE(true, [FeatureType::STRUCTURAL_PATTERN], [$highConfidenceAnomaly, $lowConfidenceAnomaly]);
$engine = new MachineLearningEngine(
enabled: true,
extractors: [$extractor],
detectors: [$detector],
clock: createMockClockMLE(),
analysisTimeout: Duration::fromSeconds(10),
confidenceThreshold: Percentage::from(50.0)
);
// Act
$result = $engine->analyzeRequest(createSampleRequestData());
// Assert
expect($result->anomalies)->toHaveCount(1);
expect($result->anomalies[0]->confidence->getValue())->toBe(80.0);
});
test('berechnet Gesamt-Konfidenz korrekt', function () {
// Arrange
$feature = new Feature(
type: FeatureType::STRUCTURAL_PATTERN,
name: 'test_feature',
value: 42.0,
unit: 'count'
);
$anomaly1 = new AnomalyDetection(
type: AnomalyType::STATISTICAL_ANOMALY,
featureType: FeatureType::STRUCTURAL_PATTERN,
confidence: Percentage::from(60.0),
anomalyScore: 0.6,
description: 'Anomaly 1',
features: [$feature],
evidence: ['value' => 42.0, 'expected_value' => 10.0]
);
$anomaly2 = new AnomalyDetection(
type: AnomalyType::CLUSTERING_DEVIATION,
featureType: FeatureType::STRUCTURAL_PATTERN,
confidence: Percentage::from(80.0),
anomalyScore: 0.4,
description: 'Anomaly 2',
features: [$feature],
evidence: ['value' => 42.0, 'expected_value' => 10.0]
);
$extractor = createMockExtractorMLE(true, FeatureType::STRUCTURAL_PATTERN, [$feature]);
$detector = createMockDetectorMLE(true, [FeatureType::STRUCTURAL_PATTERN], [$anomaly1, $anomaly2]);
$engine = new MachineLearningEngine(
enabled: true,
extractors: [$extractor],
detectors: [$detector],
clock: createMockClockMLE(),
analysisTimeout: Duration::fromSeconds(10),
confidenceThreshold: Percentage::from(50.0)
);
// Act
$result = $engine->analyzeRequest(createSampleRequestData());
// Assert
// Erwartete Konfidenz: (60.0 * 0.6 + 80.0 * 0.4) / (0.6 + 0.4) = (36 + 32) / 1 = 68
expect($result->confidence->getValue())->toBeGreaterThan(67.9);
expect($result->confidence->getValue())->toBeLessThan(68.1);
});
test('dedupliziert und sortiert Anomalien', function () {
// Arrange
$feature = new Feature(
type: FeatureType::STRUCTURAL_PATTERN,
name: 'test_feature',
value: 42.0,
unit: 'count'
);
// Zwei Anomalien mit gleichem Typ und FeatureType, aber unterschiedlicher Konfidenz
$anomaly1 = new AnomalyDetection(
type: AnomalyType::STATISTICAL_ANOMALY,
featureType: FeatureType::STRUCTURAL_PATTERN,
confidence: Percentage::from(60.0),
anomalyScore: 0.6,
description: 'Anomaly 1',
features: [$feature],
evidence: ['value' => 42.0, 'expected_value' => 10.0]
);
$anomaly2 = new AnomalyDetection(
type: AnomalyType::STATISTICAL_ANOMALY,
featureType: FeatureType::STRUCTURAL_PATTERN,
confidence: Percentage::from(80.0),
anomalyScore: 0.8,
description: 'Anomaly 2',
features: [$feature],
evidence: ['value' => 42.0, 'expected_value' => 10.0]
);
// Eine Anomalie mit anderem Typ
$anomaly3 = new AnomalyDetection(
type: AnomalyType::CLUSTERING_DEVIATION,
featureType: FeatureType::STRUCTURAL_PATTERN,
confidence: Percentage::from(70.0),
anomalyScore: 0.4,
description: 'Anomaly 3',
features: [$feature],
evidence: ['value' => 42.0, 'expected_value' => 10.0]
);
$extractor = createMockExtractorMLE(true, FeatureType::STRUCTURAL_PATTERN, [$feature]);
$detector = createMockDetectorMLE(true, [FeatureType::STRUCTURAL_PATTERN], [$anomaly1, $anomaly2, $anomaly3]);
$engine = new MachineLearningEngine(
enabled: true,
extractors: [$extractor],
detectors: [$detector],
clock: createMockClockMLE(),
analysisTimeout: Duration::fromSeconds(10),
confidenceThreshold: Percentage::from(50.0)
);
// Act
$result = $engine->analyzeRequest(createSampleRequestData());
// Assert
// Erwartet: 2 Anomalien (anomaly2 und anomaly3), da anomaly1 und anomaly2 dedupliziert werden
// und anomaly2 mit höherer Konfidenz behalten wird
expect($result->anomalies)->toHaveCount(2);
// Sortierung nach anomalyScore (absteigend), also anomaly2 vor anomaly3
expect($result->anomalies[0]->type)->toBe(AnomalyType::STATISTICAL_ANOMALY);
expect($result->anomalies[0]->confidence->getValue())->toBe(80.0);
expect($result->anomalies[1]->type)->toBe(AnomalyType::CLUSTERING_DEVIATION);
expect($result->anomalies[1]->confidence->getValue())->toBe(70.0);
});
test('gibt Konfiguration korrekt zurück', function () {
// Arrange
$engine = new MachineLearningEngine(
enabled: true,
extractors: [createMockExtractorMLE()],
detectors: [createMockDetectorMLE()],
clock: createMockClockMLE(),
analysisTimeout: Duration::fromSeconds(5),
confidenceThreshold: Percentage::from(75.0),
enableParallelProcessing: true,
enableFeatureCaching: false,
maxFeaturesPerRequest: 50
);
// Act
$config = $engine->getConfiguration();
// Assert
expect($config)->toBeArray();
expect($config['enabled'])->toBeTrue();
expect($config['analysis_timeout_ms'])->toBe(5000.0);
expect($config['confidence_threshold'])->toBe(75.0);
expect($config['enable_parallel_processing'])->toBeTrue();
expect($config['enable_feature_caching'])->toBeFalse();
expect($config['max_features_per_request'])->toBe(50);
expect($config['extractor_count'])->toBe(1);
expect($config['detector_count'])->toBe(1);
});
test('fängt Ausnahmen ab und gibt Fehlermeldung zurück', function () {
// Arrange
$extractor = Mockery::mock(WafFeatureExtractor::class, FeatureExtractorMetadata::class);
$extractor->shouldReceive('isEnabled')->andReturn(true);
$extractor->shouldReceive('getFeatureType')->andReturn(FeatureType::STRUCTURAL_PATTERN);
$extractor->shouldReceive('getPriority')->andReturn(10);
$extractor->shouldReceive('canExtract')->andReturn(true);
$extractor->shouldReceive('extractFeatures')->andThrow(new \RuntimeException('Test exception'));
$engine = new MachineLearningEngine(
enabled: true,
extractors: [$extractor],
detectors: [],
clock: createMockClockMLE(),
analysisTimeout: Duration::fromSeconds(10),
confidenceThreshold: Percentage::from(50.0)
);
// Act
$result = $engine->analyzeRequest(createSampleRequestData());
// Assert
// Individual extractor exceptions don't propagate to top-level error
// They're caught and logged to extractorResults
expect($result->error)->toBeNull();
expect($result->features)->toBeEmpty();
expect($result->anomalies)->toBeEmpty();
});
// Bereinigung nach jedem Test
afterEach(function () {
Mockery::close();
});