76 lines
2.4 KiB
PHP
76 lines
2.4 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
use App\Domain\QrCode\ValueObject\GaloisField;
|
|
use App\Domain\QrCode\ValueObject\Polynomial;
|
|
|
|
test('Polynomial kann erstellt werden', function () {
|
|
$field = new GaloisField();
|
|
$poly = new Polynomial($field, [1, 2, 3]); // x^2 + 2x + 3
|
|
|
|
expect($poly->getCoefficients())->toBe([1, 2, 3]);
|
|
expect($poly->getDegree())->toBe(2);
|
|
});
|
|
|
|
test('Polynomial entfernt führende Nullen', function () {
|
|
$field = new GaloisField();
|
|
$poly = new Polynomial($field, [0, 0, 1, 2]); // x + 2
|
|
|
|
expect($poly->getCoefficients())->toBe([1, 2]);
|
|
expect($poly->getDegree())->toBe(1);
|
|
});
|
|
|
|
test('Polynomial kann an Stelle x ausgewertet werden', function () {
|
|
$field = new GaloisField();
|
|
$poly = new Polynomial($field, [1, 0, 1]); // x^2 + 1
|
|
|
|
expect($poly->evaluateAt(0))->toBe(1);
|
|
expect($poly->evaluateAt(1))->toBe(0); // 1^2 + 1 = 2 = 0 in GF(2)
|
|
expect($poly->evaluateAt(2))->toBe(5); // 2^2 + 1 = 5
|
|
});
|
|
|
|
test('Polynomial Addition funktioniert', function () {
|
|
$field = new GaloisField();
|
|
$poly1 = new Polynomial($field, [1, 2]); // x + 2
|
|
$poly2 = new Polynomial($field, [3, 4]); // 3x + 4
|
|
|
|
$sum = $poly1->add($poly2);
|
|
|
|
// In GF(2^8) ist Addition = XOR, daher 1⊕3=2, 2⊕4=6
|
|
expect($sum->getCoefficients())->toBe([2, 6]);
|
|
});
|
|
|
|
test('Polynomial Multiplikation funktioniert', function () {
|
|
$field = new GaloisField();
|
|
$poly1 = new Polynomial($field, [1, 1]); // x + 1
|
|
$poly2 = new Polynomial($field, [1, 0, 1]); // x^2 + 1
|
|
|
|
$product = $poly1->multiply($poly2);
|
|
|
|
// (x + 1)(x^2 + 1) = x^3 + x^2 + x + 1
|
|
expect($product->getCoefficients())->toBe([1, 1, 1, 1]);
|
|
});
|
|
|
|
test('Polynomial Division funktioniert', function () {
|
|
$field = new GaloisField();
|
|
$poly1 = new Polynomial($field, [1, 0, 1]); // x^2 + 1
|
|
$poly2 = new Polynomial($field, [1, 1]); // x + 1
|
|
|
|
$result = $poly1->divideAndRemainder($poly2);
|
|
|
|
// (x^2 + 1) ÷ (x + 1) = x - 1 + 2/(x+1)
|
|
// In GF(2^8): Quotient = x - 1 = x + 1, Rest = 2
|
|
expect($result['quotient']->getCoefficients())->toEqual([1, 1]);
|
|
expect($result['remainder']->getCoefficients())->toEqual([0]);
|
|
});
|
|
|
|
test('Generator Polynom kann korrekt erstellt werden', function () {
|
|
$field = new GaloisField();
|
|
$generator = Polynomial::buildGenerator($field, 3);
|
|
|
|
// Erwartetes Ergebnis für Grad 3
|
|
expect($generator->getDegree())->toBe(3);
|
|
expect(count($generator->getCoefficients()))->toBe(4);
|
|
});
|