getMethod('getGeneratorPolynomial'); $getGeneratorMethod->setAccessible(true); $generator = $getGeneratorMethod->invoke($rs, 10); echo "Generator polynomial: " . implode(', ', $generator) . "\n"; echo "This represents: g(x) = (x - α^0)(x - α^1)...(x - α^9)\n"; echo "The roots are: α^0, α^1, ..., α^9\n\n"; // For a valid RS codeword, when we evaluate the codeword polynomial at the generator roots, // we should get zero. But the question is: what is the codeword polynomial representation? // In QR codes, codewords are placed in a specific order. Let's check if the order matters. $fullCodeword = array_merge($data, $ec); echo "Full codeword (26 bytes): " . implode(', ', $fullCodeword) . "\n\n"; // Test 1: Standard RS polynomial representation // c(x) = c[0] + c[1]*x + c[2]*x^2 + ... + c[n-1]*x^(n-1) // where c[0] is the first codeword (data[0]) echo "=== Test 1: Standard RS Polynomial (c[0] is lowest power) ===\n"; $syndromes1 = []; for ($i = 0; $i < 10; $i++) { $alphaPower = $gfExp[$i]; $syndrome = 0; $power = 1; // x^0 = 1 for ($j = 0; $j < count($fullCodeword); $j++) { $syndrome ^= gfMult($gfExp, $gfLog, $fullCodeword[$j], $power); $power = gfMult($gfExp, $gfLog, $power, $alphaPower); } $syndromes1[$i] = $syndrome; } echo "Syndromes: " . implode(', ', $syndromes1) . "\n"; echo "All zero: " . (array_sum($syndromes1) === 0 ? "✅" : "❌") . "\n\n"; // Test 2: Reversed polynomial (MSB-first) // c(x) = c[0]*x^(n-1) + c[1]*x^(n-2) + ... + c[n-1] // This is how QR codes typically represent polynomials $n = count($fullCodeword); echo "=== Test 2: Reversed Polynomial (c[0] is highest power) ===\n"; $syndromes2 = []; for ($i = 0; $i < 10; $i++) { $alphaPower = $gfExp[$i]; $syndrome = 0; // Start with x^(n-1) evaluated at α^i $power = $gfExp[($i * ($n - 1)) % 255]; for ($j = 0; $j < $n; $j++) { $syndrome ^= gfMult($gfExp, $gfLog, $fullCodeword[$j], $power); // Divide by α^i (multiply by α^(255-i)) $power = gfMult($gfExp, $gfLog, $power, $gfExp[255 - $i]); } $syndromes2[$i] = $syndrome; } echo "Syndromes: " . implode(', ', $syndromes2) . "\n"; echo "All zero: " . (array_sum($syndromes2) === 0 ? "✅" : "❌") . "\n\n"; // Test 3: Maybe the generator polynomial roots are different? // In some RS implementations, the generator is g(x) = (x - α^1)(x - α^2)...(x - α^t) // instead of (x - α^0)(x - α^1)...(x - α^(t-1)) echo "=== Test 3: Shifted Generator Roots (α^1 to α^10) ===\n"; $syndromes3 = []; for ($i = 1; $i <= 10; $i++) { $alphaPower = $gfExp[$i]; $syndrome = 0; $power = 1; for ($j = 0; $j < count($fullCodeword); $j++) { $syndrome ^= gfMult($gfExp, $gfLog, $fullCodeword[$j], $power); $power = gfMult($gfExp, $gfLog, $power, $alphaPower); } $syndromes3[$i - 1] = $syndrome; } echo "Syndromes: " . implode(', ', $syndromes3) . "\n"; echo "All zero: " . (array_sum($syndromes3) === 0 ? "✅" : "❌") . "\n\n"; // Test 4: Maybe we need to reverse the codeword array? echo "=== Test 4: Reversed Codeword Array ===\n"; $reversedCodeword = array_reverse($fullCodeword); $syndromes4 = []; for ($i = 0; $i < 10; $i++) { $alphaPower = $gfExp[$i]; $syndrome = 0; $power = 1; for ($j = 0; $j < count($reversedCodeword); $j++) { $syndrome ^= gfMult($gfExp, $gfLog, $reversedCodeword[$j], $power); $power = gfMult($gfExp, $gfLog, $power, $alphaPower); } $syndromes4[$i] = $syndrome; } echo "Syndromes: " . implode(', ', $syndromes4) . "\n"; echo "All zero: " . (array_sum($syndromes4) === 0 ? "✅" : "❌") . "\n\n"; // Test 5: Verify our encoding produces valid codewords echo "=== Test 5: Verify Our Encoding ===\n"; $ourEC = $rs->encode($data, 10); if ($ourEC === $ec) { echo "✅ Our encoding matches reference EC codewords!\n"; echo "This confirms Reed-Solomon encoding is CORRECT.\n\n"; echo "Conclusion:\n"; echo "The syndrome calculation might use a different polynomial representation\n"; echo "or evaluation method than standard RS. However, since the EC codewords\n"; echo "are correct and match the reference, the QR code should work correctly.\n"; echo "The syndrome calculation is primarily for debugging/validation purposes.\n"; } else { echo "❌ Our encoding doesn't match!\n"; }