encode($testData, $ecCodewords); echo "EC codewords generated: " . implode(', ', $ec) . "\n\n"; // Verify: For RS codes, the message polynomial evaluated at generator roots should be zero // But we need the decoder for that. For now, let's verify the algorithm structure. echo "=== Algorithm Verification ===\n"; echo "Reed-Solomon encoding algorithm:\n"; echo "1. Create message polynomial: m(x) = data + zeros\n"; echo "2. Multiply message by x^t (shift left by t positions)\n"; echo "3. Divide by generator polynomial g(x)\n"; echo "4. EC codewords = remainder\n\n"; // Check if our implementation does this correctly $reflection = new ReflectionClass($reedSolomon); $encodeMethod = $reflection->getMethod('encode'); $getGeneratorMethod = $reflection->getMethod('getGeneratorPolynomial'); $getGeneratorMethod->setAccessible(true); $generator = $getGeneratorMethod->invoke($reedSolomon, $ecCodewords); echo "Generator polynomial (degree {$ecCodewords}): " . implode(', ', $generator) . "\n"; echo "Coefficient count: " . count($generator) . " (expected: " . ($ecCodewords + 1) . ")\n\n"; // The key issue: In our implementation, we're doing polynomial division // But we need to verify that the algorithm is correct. echo "=== Potential Issue ===\n"; echo "The Reed-Solomon encoding in QR codes uses:\n"; echo " - Message polynomial: m(x) = data codewords\n"; echo " - Shift: m(x) * x^t (where t = number of EC codewords)\n"; echo " - Division: (m(x) * x^t) / g(x)\n"; echo " - EC = remainder\n\n"; echo "Our implementation:\n"; echo " - Creates message polynomial with zeros: [data, 0, 0, ..., 0]\n"; echo " - Performs polynomial division\n"; echo " - Returns last t coefficients as EC codewords\n\n"; echo "This should be correct, but let's verify the polynomial division algorithm.\n";