feat(Docker): Upgrade to PHP 8.5.0RC3 with native ext-uri support

BREAKING CHANGE: Requires PHP 8.5.0RC3

Changes:
- Update Docker base image from php:8.4-fpm to php:8.5.0RC3-fpm
- Enable ext-uri for native WHATWG URL parsing support
- Update composer.json PHP requirement from ^8.4 to ^8.5
- Add ext-uri as required extension in composer.json
- Move URL classes from Url.php85/ to Url/ directory (now compatible)
- Remove temporary PHP 8.4 compatibility workarounds

Benefits:
- Native URL parsing with Uri\WhatWg\Url class
- Better performance for URL operations
- Future-proof with latest PHP features
- Eliminates PHP version compatibility issues
This commit is contained in:
2025-10-27 09:31:28 +01:00
parent 799f74f00a
commit c8b47e647d
81 changed files with 6988 additions and 601 deletions

View File

@@ -0,0 +1,373 @@
<?php
declare(strict_types=1);
/**
* ML Management System Performance Tests
*
* Benchmarks for Database-backed ML Management components:
* - DatabaseModelRegistry performance
* - DatabasePerformanceStorage throughput
* - Model lookup latency
* - Bulk operations efficiency
*
* Performance Baselines (Target):
* - Model registration: <10ms
* - Model lookup: <5ms
* - Prediction storage: <15ms
* - Bulk prediction insert (100): <500ms
* - Accuracy calculation (1000 records): <100ms
*/
require __DIR__ . '/../../../vendor/autoload.php';
use App\Framework\Core\ContainerBootstrapper;
use App\Framework\DI\DefaultContainer;
use App\Framework\Performance\EnhancedPerformanceCollector;
use App\Framework\Config\Environment;
use App\Framework\Context\ExecutionContext;
use App\Framework\Database\ValueObjects\SqlQuery;
use App\Framework\Database\ConnectionInterface;
use App\Framework\MachineLearning\ModelManagement\DatabaseModelRegistry;
use App\Framework\MachineLearning\ModelManagement\DatabasePerformanceStorage;
use App\Framework\MachineLearning\ModelManagement\ValueObjects\ModelMetadata;
use App\Framework\MachineLearning\ModelManagement\ValueObjects\ModelType;
use App\Framework\Core\ValueObjects\Version;
use App\Framework\Core\ValueObjects\Timestamp;
use App\Framework\Core\ValueObjects\Duration;
// Bootstrap container
$performanceCollector = new EnhancedPerformanceCollector(
new \App\Framework\DateTime\SystemClock(),
new \App\Framework\DateTime\SystemHighResolutionClock(),
new \App\Framework\Performance\MemoryMonitor()
);
$container = new DefaultContainer();
$env = Environment::fromFile(__DIR__ . '/../../../.env');
$container->instance(Environment::class, $env);
$executionContext = ExecutionContext::forTest();
$container->instance(ExecutionContext::class, $executionContext);
$bootstrapper = new ContainerBootstrapper($container);
$container = $bootstrapper->bootstrap('/var/www/html', $performanceCollector);
if (!function_exists('container')) {
function container() {
global $container;
return $container;
}
}
// Color output helpers
function green(string $text): string {
return "\033[32m{$text}\033[0m";
}
function red(string $text): string {
return "\033[31m{$text}\033[0m";
}
function yellow(string $text): string {
return "\033[33m{$text}\033[0m";
}
function blue(string $text): string {
return "\033[34m{$text}\033[0m";
}
function cyan(string $text): string {
return "\033[36m{$text}\033[0m";
}
// Performance tracking
$benchmarks = [];
function benchmark(string $name, callable $fn, int $iterations = 1): array
{
global $benchmarks;
$times = [];
$memoryBefore = memory_get_usage(true);
for ($i = 0; $i < $iterations; $i++) {
$start = microtime(true);
$fn();
$end = microtime(true);
$times[] = ($end - $start) * 1000; // Convert to milliseconds
}
$memoryAfter = memory_get_usage(true);
$memoryUsed = ($memoryAfter - $memoryBefore) / 1024 / 1024; // MB
$avgTime = array_sum($times) / count($times);
$minTime = min($times);
$maxTime = max($times);
$result = [
'name' => $name,
'iterations' => $iterations,
'avg_time_ms' => round($avgTime, 2),
'min_time_ms' => round($minTime, 2),
'max_time_ms' => round($maxTime, 2),
'memory_mb' => round($memoryUsed, 2),
'throughput' => $iterations > 1 ? round(1000 / $avgTime, 2) : null,
];
$benchmarks[] = $result;
return $result;
}
function printBenchmark(array $result, ?float $baselineMs = null): void
{
$name = str_pad($result['name'], 50, '.');
$avgTime = str_pad($result['avg_time_ms'] . 'ms', 10, ' ', STR_PAD_LEFT);
// Color based on baseline
if ($baselineMs !== null) {
$color = $result['avg_time_ms'] <= $baselineMs ? 'green' : 'red';
$status = $result['avg_time_ms'] <= $baselineMs ? '✓' : '✗';
echo $color("$status ") . "$name " . $color($avgTime);
} else {
echo cyan(" ") . "$name " . cyan($avgTime);
}
if ($result['throughput']) {
echo yellow(" ({$result['throughput']} ops/sec)");
}
echo "\n";
}
echo blue("╔════════════════════════════════════════════════════════════╗\n");
echo blue("║ ML Management System Performance Benchmarks ║\n");
echo blue("╚════════════════════════════════════════════════════════════╝\n\n");
// Get services
$connection = $container->get(ConnectionInterface::class);
$registry = $container->get(DatabaseModelRegistry::class);
$storage = $container->get(DatabasePerformanceStorage::class);
// Clean up test data
echo yellow("Preparing test environment...\n");
$connection->execute(SqlQuery::create('DELETE FROM ml_models WHERE model_name LIKE ?', ['perf-test-%']));
$connection->execute(SqlQuery::create('DELETE FROM ml_predictions WHERE model_name LIKE ?', ['perf-test-%']));
$connection->execute(SqlQuery::create('DELETE FROM ml_confidence_baselines WHERE model_name LIKE ?', ['perf-test-%']));
echo "\n" . blue("═══ DatabaseModelRegistry Benchmarks ═══\n\n");
// Benchmark 1: Single Model Registration
$result = benchmark('Model Registration (single)', function() use ($registry) {
static $counter = 0;
$counter++;
$metadata = new ModelMetadata(
modelName: "perf-test-model-{$counter}",
modelType: ModelType::SUPERVISED,
version: new Version(1, 0, 0),
configuration: ['layers' => 3, 'neurons' => 128],
performanceMetrics: ['accuracy' => 0.95],
createdAt: Timestamp::now(),
deployedAt: Timestamp::now(),
environment: 'production'
);
$registry->register($metadata);
}, 100);
printBenchmark($result, 10.0); // Baseline: <10ms
// Benchmark 2: Model Lookup by Name and Version
$testModel = new ModelMetadata(
modelName: 'perf-test-lookup',
modelType: ModelType::SUPERVISED,
version: new Version(1, 0, 0),
configuration: [],
performanceMetrics: [],
createdAt: Timestamp::now(),
deployedAt: Timestamp::now(),
environment: 'production'
);
$registry->register($testModel);
$result = benchmark('Model Lookup (by name + version)', function() use ($registry) {
$registry->get('perf-test-lookup', new Version(1, 0, 0));
}, 500);
printBenchmark($result, 5.0); // Baseline: <5ms
// Benchmark 3: Get Latest Model
$result = benchmark('Model Lookup (latest)', function() use ($registry) {
$registry->getLatest('perf-test-lookup');
}, 500);
printBenchmark($result, 5.0); // Baseline: <5ms
// Benchmark 4: Get All Models for Name
for ($i = 0; $i < 10; $i++) {
$metadata = new ModelMetadata(
modelName: 'perf-test-multi',
modelType: ModelType::SUPERVISED,
version: new Version(1, $i, 0),
configuration: [],
performanceMetrics: [],
createdAt: Timestamp::now(),
deployedAt: null,
environment: 'development'
);
$registry->register($metadata);
}
$result = benchmark('Get All Models (10 versions)', function() use ($registry) {
$registry->getAll('perf-test-multi');
}, 200);
printBenchmark($result, 15.0); // Baseline: <15ms
echo "\n" . blue("═══ DatabasePerformanceStorage Benchmarks ═══\n\n");
// Benchmark 5: Single Prediction Storage
$result = benchmark('Prediction Storage (single)', function() use ($storage) {
static $counter = 0;
$counter++;
$record = [
'model_name' => 'perf-test-predictions',
'version' => '1.0.0',
'prediction' => ['class' => 'A', 'confidence' => 0.9],
'actual' => ['class' => 'A'],
'confidence' => 0.9,
'features' => ['feature1' => 100, 'feature2' => 200],
'timestamp' => Timestamp::now(),
'is_correct' => true,
];
$storage->storePrediction($record);
}, 100);
printBenchmark($result, 15.0); // Baseline: <15ms
// Benchmark 6: Bulk Prediction Storage
$result = benchmark('Prediction Storage (bulk 100)', function() use ($storage) {
static $batchCounter = 0;
$batchCounter++;
for ($i = 0; $i < 100; $i++) {
$record = [
'model_name' => "perf-test-bulk-{$batchCounter}",
'version' => '1.0.0',
'prediction' => ['class' => 'A'],
'actual' => ['class' => 'A'],
'confidence' => 0.85,
'features' => ['f1' => $i],
'timestamp' => Timestamp::now(),
'is_correct' => true,
];
$storage->storePrediction($record);
}
}, 5);
printBenchmark($result, 500.0); // Baseline: <500ms
// Benchmark 7: Get Recent Predictions
for ($i = 0; $i < 100; $i++) {
$record = [
'model_name' => 'perf-test-recent',
'version' => '1.0.0',
'prediction' => ['class' => 'A'],
'actual' => ['class' => 'A'],
'confidence' => 0.85,
'features' => [],
'timestamp' => Timestamp::now(),
'is_correct' => true,
];
$storage->storePrediction($record);
}
$result = benchmark('Get Recent Predictions (100)', function() use ($storage) {
$storage->getRecentPredictions('perf-test-recent', new Version(1, 0, 0), 100);
}, 100);
printBenchmark($result, 20.0); // Baseline: <20ms
// Benchmark 8: Calculate Accuracy (1000 records)
for ($i = 0; $i < 1000; $i++) {
$record = [
'model_name' => 'perf-test-accuracy',
'version' => '1.0.0',
'prediction' => ['class' => 'A'],
'actual' => ['class' => ($i % 4 === 0) ? 'B' : 'A'], // 75% accuracy
'confidence' => 0.85,
'features' => [],
'timestamp' => Timestamp::now(),
'is_correct' => ($i % 4 !== 0),
];
$storage->storePrediction($record);
}
$result = benchmark('Calculate Accuracy (1000 records)', function() use ($storage) {
$storage->calculateAccuracy('perf-test-accuracy', new Version(1, 0, 0), 1000);
}, 50);
printBenchmark($result, 100.0); // Baseline: <100ms
// Benchmark 9: Confidence Baseline Storage
$result = benchmark('Confidence Baseline Storage', function() use ($storage) {
static $counter = 0;
$counter++;
$storage->storeConfidenceBaseline(
"perf-test-baseline-{$counter}",
new Version(1, 0, 0),
0.85,
0.12
);
}, 100);
printBenchmark($result, 10.0); // Baseline: <10ms
// Benchmark 10: Confidence Baseline Retrieval
$storage->storeConfidenceBaseline('perf-test-baseline-get', new Version(1, 0, 0), 0.85, 0.12);
$result = benchmark('Confidence Baseline Retrieval', function() use ($storage) {
$storage->getConfidenceBaseline('perf-test-baseline-get', new Version(1, 0, 0));
}, 500);
printBenchmark($result, 5.0); // Baseline: <5ms
// Summary
echo "\n" . blue("═══ Performance Summary ═══\n\n");
$totalTests = count($benchmarks);
$passedTests = 0;
foreach ($benchmarks as $benchmark) {
// Define baseline for each test
$baselines = [
'Model Registration (single)' => 10.0,
'Model Lookup (by name + version)' => 5.0,
'Model Lookup (latest)' => 5.0,
'Get All Models (10 versions)' => 15.0,
'Prediction Storage (single)' => 15.0,
'Prediction Storage (bulk 100)' => 500.0,
'Get Recent Predictions (100)' => 20.0,
'Calculate Accuracy (1000 records)' => 100.0,
'Confidence Baseline Storage' => 10.0,
'Confidence Baseline Retrieval' => 5.0,
];
$baseline = $baselines[$benchmark['name']] ?? null;
if ($baseline && $benchmark['avg_time_ms'] <= $baseline) {
$passedTests++;
}
}
echo green("Passed: {$passedTests}/{$totalTests}\n");
if ($passedTests < $totalTests) {
echo red("Failed: " . ($totalTests - $passedTests) . "/{$totalTests}\n");
} else {
echo green("All performance benchmarks passed! ✓\n");
}
echo "\n" . cyan("Memory Usage: " . round(memory_get_peak_usage(true) / 1024 / 1024, 2) . " MB\n");
// Clean up
echo "\n" . yellow("Cleaning up test data...\n");
$connection->execute(SqlQuery::create('DELETE FROM ml_models WHERE model_name LIKE ?', ['perf-test-%']));
$connection->execute(SqlQuery::create('DELETE FROM ml_predictions WHERE model_name LIKE ?', ['perf-test-%']));
$connection->execute(SqlQuery::create('DELETE FROM ml_confidence_baselines WHERE model_name LIKE ?', ['perf-test-%']));
exit($passedTests === $totalTests ? 0 : 1);