Enable Discovery debug logging for production troubleshooting
- Add DISCOVERY_LOG_LEVEL=debug - Add DISCOVERY_SHOW_PROGRESS=true - Temporary changes for debugging InitializerProcessor fixes on production
This commit is contained in:
@@ -0,0 +1,280 @@
|
||||
<?php
|
||||
|
||||
declare(strict_types=1);
|
||||
|
||||
namespace Tests\Framework\Waf\MachineLearning\Detectors;
|
||||
|
||||
use App\Framework\Core\ValueObjects\Duration;
|
||||
use App\Framework\Core\ValueObjects\Timestamp;
|
||||
use App\Framework\DateTime\DateTime;
|
||||
use App\Framework\Waf\MachineLearning\AnomalyType;
|
||||
use App\Framework\Waf\MachineLearning\BehaviorType;
|
||||
use App\Framework\Waf\MachineLearning\Detectors\StatisticalAnomalyDetector;
|
||||
use App\Framework\Waf\MachineLearning\ValueObjects\AnomalyDetection;
|
||||
use App\Framework\Waf\MachineLearning\ValueObjects\BehaviorBaseline;
|
||||
use App\Framework\Waf\MachineLearning\ValueObjects\BehaviorFeature;
|
||||
|
||||
// Hilfsfunktion zum Erstellen einer Baseline für Tests
|
||||
function createTestBaselineSAD(?BehaviorType $type = null): BehaviorBaseline
|
||||
{
|
||||
$type = $type ?? BehaviorType::PATH_PATTERNS;
|
||||
$now = Timestamp::fromDateTime(DateTime::fromTimestamp(time()));
|
||||
|
||||
return new BehaviorBaseline(
|
||||
type: $type,
|
||||
identifier: 'test-client',
|
||||
mean: 10.0,
|
||||
standardDeviation: 5.0,
|
||||
median: 10.0,
|
||||
minimum: 5.0,
|
||||
maximum: 25.0,
|
||||
percentiles: [
|
||||
25 => 7.5,
|
||||
75 => 15.0,
|
||||
90 => 18.0,
|
||||
95 => 20.0,
|
||||
99 => 22.0,
|
||||
],
|
||||
sampleCount: 20,
|
||||
createdAt: $now,
|
||||
lastUpdated: $now,
|
||||
windowSize: Duration::fromMinutes(30),
|
||||
confidence: 0.8
|
||||
);
|
||||
}
|
||||
|
||||
test('erkennt Z-Score-Anomalien korrekt', function () {
|
||||
// Arrange
|
||||
$detector = new StatisticalAnomalyDetector(
|
||||
enabled: true,
|
||||
confidenceThreshold: 0.5,
|
||||
zScoreThreshold: 2.0,
|
||||
extremeZScoreThreshold: 3.0,
|
||||
minSampleSize: 5,
|
||||
enableOutlierDetection: true,
|
||||
enableTrendAnalysis: true,
|
||||
featureHistory: []
|
||||
);
|
||||
|
||||
$feature = new BehaviorFeature(
|
||||
type: BehaviorType::PATH_PATTERNS,
|
||||
name: 'test_feature',
|
||||
value: 42.0,
|
||||
unit: 'count'
|
||||
);
|
||||
|
||||
$baseline = createTestBaselineSAD();
|
||||
|
||||
// Act
|
||||
$anomalies = $detector->detectAnomalies([$feature], $baseline);
|
||||
|
||||
// Assert
|
||||
expect($anomalies)->toHaveCount(1);
|
||||
expect($anomalies[0])->toBeInstanceOf(AnomalyDetection::class);
|
||||
expect($anomalies[0]->type)->toBe(AnomalyType::STATISTICAL_ANOMALY);
|
||||
expect($anomalies[0]->behaviorType)->toBe(BehaviorType::PATH_PATTERNS);
|
||||
expect($anomalies[0]->confidence->getValue())->toBeGreaterThan(50.0);
|
||||
|
||||
// Z-Score sollte (42 - 10) / 5 = 6.4 sein, was deutlich über dem Schwellenwert liegt
|
||||
expect($anomalies[0]->anomalyScore)->toBeGreaterThan(0.7);
|
||||
});
|
||||
|
||||
test('ignoriert Werte innerhalb des normalen Bereichs', function () {
|
||||
// Arrange
|
||||
$detector = new StatisticalAnomalyDetector(
|
||||
enabled: true,
|
||||
confidenceThreshold: 0.5,
|
||||
zScoreThreshold: 2.0,
|
||||
extremeZScoreThreshold: 3.0,
|
||||
minSampleSize: 5,
|
||||
enableOutlierDetection: true,
|
||||
enableTrendAnalysis: true,
|
||||
featureHistory: []
|
||||
);
|
||||
|
||||
$feature = new BehaviorFeature(
|
||||
type: BehaviorType::PATH_PATTERNS,
|
||||
name: 'test_feature',
|
||||
value: 12.0, // Nahe am Mittelwert
|
||||
unit: 'count'
|
||||
);
|
||||
|
||||
$baseline = createTestBaselineSAD();
|
||||
|
||||
// Act
|
||||
$anomalies = $detector->detectAnomalies([$feature], $baseline);
|
||||
|
||||
// Assert
|
||||
expect($anomalies)->toBeEmpty();
|
||||
});
|
||||
|
||||
test('erkennt Ausreißer ohne Baseline', function () {
|
||||
// Arrange
|
||||
$detector = new StatisticalAnomalyDetector(
|
||||
enabled: true,
|
||||
confidenceThreshold: 0.5,
|
||||
zScoreThreshold: 2.0,
|
||||
extremeZScoreThreshold: 3.0,
|
||||
minSampleSize: 5,
|
||||
enableOutlierDetection: true,
|
||||
enableTrendAnalysis: false,
|
||||
featureHistory: [
|
||||
BehaviorType::PATH_PATTERNS->value => [
|
||||
'test_feature' => [10, 12, 9, 11, 10, 13, 8, 11, 10, 12],
|
||||
],
|
||||
]
|
||||
);
|
||||
|
||||
$feature = new BehaviorFeature(
|
||||
type: BehaviorType::PATH_PATTERNS,
|
||||
name: 'test_feature',
|
||||
value: 30.0, // Deutlicher Ausreißer
|
||||
unit: 'count'
|
||||
);
|
||||
|
||||
// Act
|
||||
$anomalies = $detector->detectAnomalies([$feature], null);
|
||||
|
||||
// Assert
|
||||
expect($anomalies)->not->toBeEmpty();
|
||||
expect($anomalies[0]->type)->toBe(AnomalyType::OUTLIER_DETECTION);
|
||||
});
|
||||
|
||||
test('unterstützt verschiedene Verhaltenstypen', function () {
|
||||
// Arrange
|
||||
$detector = new StatisticalAnomalyDetector(
|
||||
enabled: true,
|
||||
confidenceThreshold: 0.5,
|
||||
zScoreThreshold: 2.0,
|
||||
extremeZScoreThreshold: 3.0,
|
||||
minSampleSize: 5,
|
||||
enableOutlierDetection: true,
|
||||
enableTrendAnalysis: true,
|
||||
featureHistory: []
|
||||
);
|
||||
|
||||
// Act
|
||||
$supportedTypes = $detector->getSupportedBehaviorTypes();
|
||||
|
||||
// Assert
|
||||
expect($supportedTypes)->toBeArray();
|
||||
expect($supportedTypes)->toContain(BehaviorType::REQUEST_FREQUENCY);
|
||||
expect($supportedTypes)->toContain(BehaviorType::PATH_PATTERNS);
|
||||
expect($supportedTypes)->toContain(BehaviorType::PARAMETER_PATTERNS);
|
||||
});
|
||||
|
||||
test('aktualisiert Modell mit neuen Daten', function () {
|
||||
// Arrange
|
||||
$detector = new StatisticalAnomalyDetector(
|
||||
enabled: true,
|
||||
confidenceThreshold: 0.5,
|
||||
zScoreThreshold: 2.0,
|
||||
extremeZScoreThreshold: 3.0,
|
||||
minSampleSize: 5,
|
||||
enableOutlierDetection: true,
|
||||
enableTrendAnalysis: true,
|
||||
featureHistory: []
|
||||
);
|
||||
|
||||
$feature1 = new BehaviorFeature(
|
||||
type: BehaviorType::PATH_PATTERNS,
|
||||
name: 'test_feature',
|
||||
value: 15.0,
|
||||
unit: 'count'
|
||||
);
|
||||
|
||||
$feature2 = new BehaviorFeature(
|
||||
type: BehaviorType::REQUEST_FREQUENCY,
|
||||
name: 'request_rate',
|
||||
value: 5.0,
|
||||
unit: 'requests/second'
|
||||
);
|
||||
|
||||
// Act - Keine Assertion möglich, da featureHistory private ist
|
||||
// Wir testen nur, dass keine Exception geworfen wird
|
||||
$detector->updateModel([$feature1, $feature2]);
|
||||
|
||||
// Assert
|
||||
expect(true)->toBeTrue(); // Dummy assertion
|
||||
});
|
||||
|
||||
test('gibt Konfiguration korrekt zurück', function () {
|
||||
// Arrange
|
||||
$detector = new StatisticalAnomalyDetector(
|
||||
enabled: true,
|
||||
confidenceThreshold: 0.75,
|
||||
zScoreThreshold: 2.5,
|
||||
extremeZScoreThreshold: 4.0,
|
||||
minSampleSize: 10,
|
||||
enableOutlierDetection: true,
|
||||
enableTrendAnalysis: false,
|
||||
featureHistory: []
|
||||
);
|
||||
|
||||
// Act
|
||||
$config = $detector->getConfiguration();
|
||||
|
||||
// Assert
|
||||
expect($config)->toBeArray();
|
||||
expect($config['enabled'])->toBeTrue();
|
||||
expect($config['confidence_threshold'])->toBe(0.75);
|
||||
expect($config['z_score_threshold'])->toBe(2.5);
|
||||
expect($config['extreme_z_score_threshold'])->toBe(4.0);
|
||||
expect($config['min_sample_size'])->toBe(10);
|
||||
expect($config['enable_outlier_detection'])->toBeTrue();
|
||||
expect($config['enable_trend_analysis'])->toBeFalse();
|
||||
});
|
||||
|
||||
test('kann Analyse durchführen wenn aktiviert', function () {
|
||||
// Arrange
|
||||
$detector = new StatisticalAnomalyDetector(
|
||||
enabled: true,
|
||||
confidenceThreshold: 0.5,
|
||||
zScoreThreshold: 2.0,
|
||||
extremeZScoreThreshold: 3.0,
|
||||
minSampleSize: 5,
|
||||
enableOutlierDetection: true,
|
||||
enableTrendAnalysis: true,
|
||||
featureHistory: []
|
||||
);
|
||||
|
||||
$feature = new BehaviorFeature(
|
||||
type: BehaviorType::PATH_PATTERNS,
|
||||
name: 'test_feature',
|
||||
value: 42.0,
|
||||
unit: 'count'
|
||||
);
|
||||
|
||||
// Act & Assert
|
||||
expect($detector->isEnabled())->toBeTrue();
|
||||
expect($detector->canAnalyze([$feature]))->toBeTrue();
|
||||
});
|
||||
|
||||
test('gibt leere Ergebnisse zurück wenn deaktiviert', function () {
|
||||
// Arrange
|
||||
$detector = new StatisticalAnomalyDetector(
|
||||
enabled: false,
|
||||
confidenceThreshold: 0.5,
|
||||
zScoreThreshold: 2.0,
|
||||
extremeZScoreThreshold: 3.0,
|
||||
minSampleSize: 5,
|
||||
enableOutlierDetection: true,
|
||||
enableTrendAnalysis: true,
|
||||
featureHistory: []
|
||||
);
|
||||
|
||||
$feature = new BehaviorFeature(
|
||||
type: BehaviorType::PATH_PATTERNS,
|
||||
name: 'test_feature',
|
||||
value: 42.0,
|
||||
unit: 'count'
|
||||
);
|
||||
|
||||
$baseline = createTestBaselineSAD();
|
||||
|
||||
// Act
|
||||
$anomalies = $detector->detectAnomalies([$feature], $baseline);
|
||||
|
||||
// Assert
|
||||
expect($anomalies)->toBeEmpty();
|
||||
});
|
||||
Reference in New Issue
Block a user